Review Article|Articles in Press

Insulin Therapy in Small Animals, Part 1: General Principles

Published:March 09, 2023DOI:


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Veterinary Clinics: Small Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Ahren B.
        • Taborsky G.J.
        Beta-cell function and insulin secretion.
        in: Porte D. Sherwin R. Baron A. Ellenberg & rifkin’s diabetes mellitus. The McGrew-Hill Companies Inc, New York2003
        • Owens D.R.
        • Bolli G.B.
        Beyond the era of NPH insulin--long-acting insulin analogs: chemistry, comparative pharmacology, and clinical application.
        Diabetes Technol Ther. 2008; 10: 333-349
        • Petersen M.C.
        • Shulman G.I.
        Mechanisms of insulin action and insulin resistance.
        Physiol Rev. 2018; 98: 2133-2223
        • Sheldon B.
        • Russell-Jones D.
        • Wright J.
        Insulin analogues: an example of applied medical science.
        Diabetes Obes Metabol. 2009; 11: 5-19
        • Hill R.C.
        • Burrows C.F.
        • Bauer J.E.
        • et al.
        Texturized vegetable protein containing indigestible soy carbohydrate affects blood insulin concentrations in dogs fed high fat diets.
        J Nutr. 2006; 136: 2024S-2027S
      1. Carciofi AC, Takakura FS, de-Oliveira LD, et al., Effects of six carbohydrate sources on dog diet digestibility and post-prandial glucose and insulin response, J Anim Physiol Anim Nutr, 2008;92:326–336.

        • Elliott K.F.
        • Rand J.S.
        • Fleeman L.M.
        • et al.
        A diet lower in digestible carbohydrate results in lower postprandial glucose concentrations compared with a traditional canine diabetes diet and an adult maintenance diet in healthy dogs.
        Res Vet Sci. 2012; 93: 288-295
        • Appleton D.J.
        • Rand J.S.
        • Sunvold G.D.
        Insulin sensitivity decreases with obesity, and lean cats with low insulin sensitivity are at greatest risk of glucose intolerance with weight gain.
        J Feline Med Surg. 2001; 3: 211-228
        • Mori A.
        • Sako T.
        • Lee P.
        • et al.
        Comparison of three commercially available prescription diet regimens on short-term post-prandial serum glucose and insulin concentrations in healthy cats.
        Vet Res Commun. 2009; 33: 669-680
        • de-Oliveira L.D.
        • Carciofi A.C.
        • Oliveira M.C.
        • et al.
        Effects of six carbohydrate sources on diet digestibility and postprandial glucose and insulin responses in cats.
        J Anim Sci. 2008; 86: 2237-2246
        • Camara A.
        • Verbrugghe A.
        • Cargo-Froom C.
        • et al.
        The daytime feeding frequency affects appetite-regulating hormones, amino acids, physical activity, and respiratory quotient, but not energy expenditure, in adult cats fed regimens for 21 days.
        PLoS One. 2020; 15e0238522
      2. American Diabetes Association, 9. Pharmacologic approaches to glycemic treatment: standards of medical care in diabetes-2020.
        Diabetes Care. 2020; 43: S98-S110
        • Crinò Iavazzo F., Ferri F.,, C.
        • et al.
        Diabetic remission in a cat treated with an implantable pump to deliver insulin.
        The Canadian veterinary journal = La revue veterinaire canadienne. 2020; 61: 30-34
        • Yang J.F.
        • Gong X.
        • Bakh N.A.
        • et al.
        Connecting rodent and human pharmacokinetic models for the design and translation of glucose-responsive insulin.
        Diabetes. 2020; 69: 1815-1826
        • Hermansen K.
        • Davies M.
        Does insulin detemir have a role in reducing risk of insulin-associated weight gain?.
        Diabetes Obes Metabol. 2007; 9: 209-217
        • Heise T.
        • Zijlstra E.
        • Nosek L.
        • et al.
        Euglycaemic glucose clamp: what it can and cannot do, and how to do it.
        Diabetes Obes Metabol. 2016;
        • Horvath K.
        • Bock G.
        • Regittnig W.
        • et al.
        Insulin glulisine, insulin lispro and regular human insulin show comparable end-organ metabolic effects: an exploratory study.
        Diabetes Obes Metabol. 2008; 10: 484-491
        • Hirsch I.B.
        • Juneja R.
        • Beals J.M.
        • et al.
        The evolution of insulin and how it informs therapy and treatment choices.
        Endocr Rev. 2020; 41: 733-755
        • Havelund S.
        • Plum A.
        • Ribel U.
        • et al.
        The mechanism of protraction of insulin detemir, a long-acting, acylated analog of human insulin.
        Pharm Res (N Y). 2004; 21: 1498-1504
        • Plum A.
        • Agerso H.
        • Andersen L.
        Pharmacokinetics of the rapid-acting insulin analog, insulin aspart, in rats, dogs, and pigs, and pharmacodynamics of insulin aspart in pigs.
        Drug Metab Dispos. 2000; 28: 155-160
        • Rave K.
        • Potocka E.
        • Heinemann L.
        • et al.
        Pharmacokinetics and linear exposure of AFRESA compared with the subcutaneous injection of regular human insulin.
        Diabetes Obes Metabol. 2009; 11: 715-720
        • Gilor C.
        • Keel T.
        • Attermeier K.J.
        • et al.
        Hyperinsulinemic-euglycemic clamps using insulin detemir and insulin glargine in healthy cats [abstract].
        J Vet Intern Med. 2008; 22: 729
        • Jehle P.M.
        • Micheler C.
        • Jehle D.R.
        • et al.
        Inadequate suspension of neutral protamine Hagendorn (NPH) insulin in pens.
        Lancet (London, England). 1999; 354: 1604-1607
        • Heise T.
        • Nosek L.
        • Rønn B.B.
        • et al.
        Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes.
        Diabetes. 2004; 53: 1614-1620
        • Kohn W.D.
        • Micanovic R.
        • Myers S.L.
        • et al.
        pI-shifted insulin analogs with extended in vivo time action and favorable receptor selectivity.
        Peptides. 2007; 28: 935-948
        • Becker R.H.A.
        • Nowotny I.
        • Teichert L.
        • et al.
        Low within- and between-day variability in exposure to new insulin glargine 300 U/ml.
        Diabetes Obes Metabol. 2015;
        • Steinstraesser A.
        • Schmidt R.
        • Bergmann K.
        • et al.
        Investigational new insulin glargine 300 U/ml has the same metabolism as insulin glargine 100 U/ml.
        Diabetes Obes Metabol. 2014;
        • Riddle M.C.
        • Bolli G.B.
        • Ziemen M.
        • et al.
        New insulin glargine 300 units/mL versus glargine 100 units/mL in people with type 2 diabetes using basal and mealtime insulin: Glucose control and hypoglycemia in a 6-month randomized controlled trial (EDITION 1).
        Diabetes Care. 2014;
        • Ritzel R.
        • Roussel R.
        • Bolli G.B.
        • et al.
        Patient-level meta-analysis of the EDITION 1, 2 and 3 studies: Glycaemic control and hypoglycaemia with new insulin glargine 300 U/ml versus glargine 100 U/ml in people with type 2 diabetes.
        Diabetes Obes Metabol. 2015;
        • Heise T.
        • Pieber T.R.
        Towards peakless, reproducible and long-acting insulins. An assessment of the basal analogues based on isoglycaemic clamp studies.
        Diabetes Obes Metabol. 2007; 9: 648-659
        • Soran H.
        • Younis N.
        Insulin detemir: a new basal insulin analogue.
        Diabetes Obes Metabol. 2006; 8: 26-30
        • Danne T.
        • Datz N.
        • Endahl L.
        • et al.
        Insulin detemir is characterized by a more reproducible pharmacokinetic profile than insulin glargine in children and adolescents with type 1 diabetes: results from a randomized, double-blind, controlled trial.
        Pediatr Diabetes. 2008; 9: 554-560
        • Fakhoury W.
        • Lockhart I.
        • Kotchie R.W.
        • et al.
        Indirect comparison of once daily insulin detemir and glargine in reducing weight gain and hypoglycaemic episodes when administered in addition to conventional oral anti-diabetic therapy in patients with type-2 diabetes.
        Pharmacology. 2008; 82: 156-163
        • Monami M.
        • Marchionni N.
        • Mannucci E.
        Long-acting insulin analogues versus NPH human insulin in type 2 diabetes: a meta-analysis.
        Diabetes Res Clin Pract. 2008; 81: 184-189
        • Gilor C.
        • Ridge T.K.
        • Attermeier K.J.
        • et al.
        Pharmacodynamics of insulin detemir and insulin glargine assessed by an isoglycemic clamp method in healthy cats.
        J Vet Intern Med. 2010, 870-874; 24
        • Fink H.
        • Herbert C.
        • Gilor C.
        Pharmacodynamics and pharmacokinetics of insulin detemir and insulin glargine 300 U/mL in healthy dogs.
        Domest Anim Endocrinol. 2018, 17-30; 64
        • Sako T.
        • Mori A.
        • Lee P.
        • et al.
        Time-action profiles of insulin detemir in normal and diabetic dogs.
        Res Vet Sci. 2011; 90: 396-403
        • Heise T.
        • Nørskov M.
        • Nosek L.
        • et al.
        Insulin degludec: Lower day-to-day and within-day variability in pharmacodynamic response compared with insulin glargine 300 U/mL in type 1 diabetes.
        Diabetes Obes Metabol. 2017; 19: 1032-1039
        • Oda H.
        • Mori A.
        • Ishii S.
        • et al.
        Time-action profiles of insulin degludec in healthy dogs and its effects on glycemic control in diabetic dogs.
        J Vet Med Sci. 2018; 80: 1720-1723
        • Gilor C.
        • Culp W.
        • Ghandi S.
        • et al.
        Comparison of pharmacodynamics and pharmacokinetics of insulin degludec and insulin glargine 300 U/mL in healthy cats.
        Domest Anim Endocrinol. 2019; 69: 19-29
        • Pyzik M.
        • Sand K.M.K.
        • Hubbard J.J.
        • et al.
        The Neonatal Fc Receptor (FcRn): A Misnomer?.
        Front Immunol. 2019; 10: 1540
        • Roopenian D.C.
        • Akilesh S.
        FcRn: the neonatal Fc receptor comes of age.
        Nat Rev Immunol. 2007; 7: 715-725
        • Gilor C.
        • Hulsebosch S.E.
        • Pires J.
        • et al.
        An ultra-long-acting recombinant insulin for the treatment of diabetes mellitus in cats.
        J Vet Intern Med. 2021; 35: 2123-2130
        • Hulsebosch S.E.
        • Pires J.
        • Bannasch M.J.
        • et al.
        Ultra-long-acting recombinant insulin for the treatment of diabetes mellitus in dogs.
        J Vet Intern Med. 2022;
        • Holder A.L.
        • Kennedy L.J.
        • Ollier W.E.R.
        • et al.
        Breed differences in development of anti-insulin antibodies in diabetic dogs and investigation of the role of dog leukocyte antigen (DLA) genes.
        Vet Immunol Immunopathol. 2015; 167: 130-138
        • Hoenig M.
        • Reusch C.
        • Peterson M.E.
        Beta cell and insulin antibodies in treated and untreated diabetic cats.
        Vet Immunol Immunopathol. 2000; 77: 93-102
        • Cramer J.A.
        • Roy A.
        • Burrell A.
        • et al.
        Medication compliance and persistence: terminology and definitions, Value Heal.
        J. Int. Soc. Pharmacoeconomics Outcomes Res. 2008; 11: 44-47
        • Spain C.V.
        • Wright J.J.
        • Hahn R.M.
        • et al.
        Self-reported barriers to adherence and persistence to treatment with injectable medications for type 2 diabetes.
        Clin Therapeut. 2016; 38: 1653-1664.e1
        • Giorgino F.
        • Penfornis A.
        • Pechtner V.
        • et al.
        Adherence to antihyperglycemic medications and glucagon-like peptide 1-receptor agonists in type 2 diabetes: clinical consequences and strategies for improvement.
        Patient Prefer Adherence. 2018; 12: 707-719
        • Rubin R.R.
        • Peyrot M.
        • Kruger D.F.
        • et al.
        Barriers to insulin injection therapy: patient and health care provider perspectives.
        Diabetes Educat. 2009; 35: 1014-1022
        • Niessen S.J.
        • Powney S.
        • Guitian J.
        • et al.
        Evaluation of a quality-of-life tool for dogs with diabetes mellitus.
        J Vet Intern Med. 2012; 26: 953-961
        • Niessen S.J.
        • Powney S.
        • Guitian J.
        • et al.
        Evaluation of a quality-of-life tool for cats with diabetes mellitus.
        J Vet Intern Med. 2010; 24: 1098-1105
        • Niessen S.J.M.
        • Hazuchova K.
        • Powney S.L.
        • et al.
        The big pet diabetes survey: perceived frequency and triggers for euthanasia.
        Vet. Sci. 2017, 27; 4
        • Fall T.
        • Hamlin H.H.
        • Hedhammar A.
        • et al.
        Diabetes mellitus in a population of 180,000 insured dogs: incidence, survival, and breed distribution.
        J Vet Intern Med. 2007; 21: 1209-1216
        • Osterberg L.
        • Blaschke T.
        Adherence to medication.
        N Engl J Med. 2005; 353: 487-497
        • Pfützner A.
        • Asakura T.
        • Sommavilla B.
        • et al.
        Insulin delivery with FlexPen: dose accuracy, patient preference and adherence.
        Expet Opin Drug Deliv. 2008; 5: 915-925
        • Dang D.K.
        • Lee J.
        Analysis of symposium articles on insulin pen devices and alternative insulin delivery methods.
        J. Diabetes Sci. Technol. 2010; 4: 558-561
        • Asche C.V.
        • Shane-McWhorter L.
        • Raparla S.
        Health economics and compliance of vials/syringes versus pen devices: a review of the evidence.
        Diabetes Technol Ther. 2010; 12: S101-S108
        • Cobden D.
        • Lee W.C.
        • Balu S.
        • et al.
        Health outcomes and economic impact of therapy conversion to a biphasic insulin analog pen among privately insured patients with type 2 diabetes mellitus.
        Pharmacotherapy. 2007; 27: 948-962
        • Lee W.C.
        • Balu S.
        • Cobden D.
        • et al.
        Medication adherence and the associated health-economic impact among patients with type 2 diabetes mellitus converting to insulin pen therapy: an analysis of third-party managed care claims data.
        Clin Therapeut. 2006; 28: 1711-1712
        • Gnanalingham M.G.
        • Newland P.
        • Smith C.P.
        Accuracy and reproducibility of low dose insulin administration using pen-injectors and syringes.
        Arch Dis Child. 1998; 79: 59-62
        • Luijf Y.M.
        • DeVries J.H.
        Dosing accuracy of insulin pens versus conventional syringes and vials.
        Diabetes Technol Ther. 2010; 12: S73-S77
        • Keith K.
        • Nicholson D.
        • Rogers D.
        Accuracy and precision of low-dose insulin administration using syringes, pen injectors, and a pump.
        Clin Pediatr. 2004; 43: 69-74
        • Borin-Crivellenti S.
        • Bonagura J.
        • Gilor C.
        Comparison of precision and accuracy of U100 and U40 insulin syringes [Abstract].
        J Vet Intern Med. 2014; 28: 1029
        • Casella S.J.
        • Mongilio M.K.
        • Plotnick L.P.
        • et al.
        Accuracy and precision of low-dose insulin administration.
        Pediatrics. 1993; 91: 1155-1157
      3. Burgaud S, Guillot R, Harnois-Milon G. Clinical evaluation of a veterinary insulin pen in diabetic dogs. In: Proceedings of the WSAVA/ FECAVA/BSAVA congress; 12-15 April 2012; Birmingham, UK. Abstract 122.

        • Del Baldo F.
        • Colajanni L.
        • Corradini S.
        Glycemic control and owner preference in insulin delivery in diabetic dogs (Abstract).
        J Vet Intern Med. 2020; 34: 3134
        • Thompson A.
        • Lathan P.
        • Fleeman L.
        Update on insulin treatment for dogs and cats: insulin dosing pens and more.
        Vet Med (Auckland, N.Z). 2015; 6: 129-142
        • Holman R.R.
        • Paul S.K.
        • Bethel M.A.
        • et al.
        10-year follow-up of intensive glucose control in type 2 diabetes.
        N Engl J Med. 2008; 359: 1577-1589
        • Diabetes Control
        • Complications Trial Research Group
        • Nathan D.M.
        • Genuth S.
        • Lachin J.
        • et al.
        The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.
        N Engl J Med. 1993; 329: 977-986
      4. American Diabetes Association, 6. Glycemic Targets: Standards of Medical Care in Diabetes-2018.
        Diabetes Care. 2018; 41: S55-S64
        • Pipe-Martin H.N.
        • Fletcher J.M.
        • Gilor C.
        • et al.
        Pharmacodynamics and pharmacokinetics of insulin aspart assessed by use of the isoglycemic clamp method in healthy cats.
        Domest Anim Endocrinol. 2018; 62
        • Matsuo Y.
        • Shimoda S.
        • Sakakida M.
        • et al.
        Strict glycemic control in diabetic dogs with closed-loop intraperitoneal insulin infusion algorithm designed for an artificial endocrine pancreas.
        J Artif Organs. 2003; 6: 55-63
        • Bertalan A.V.
        • Drobatz K.J.
        • Hess R.S.
        Effects of treatment with lispro and neutral protamine Hagedorn insulins on serum fructosamine and postprandial blood glucose concentrations in dogs with clinically well-controlled diabetes mellitus and postprandial hyperglycemia.
        Am J Vet Res. 2020; 81: 153-158
        • DeClue A.E.
        • Leverenz E.F.
        • Wiedmeyer C.E.
        • et al.
        Glucose lowering effects of inhaled insulin in healthy cats.
        J Feline Med Surg. 2008; 10: 519-522