Advertisement
Review Article|Articles in Press

Diabetes Mellitus and the Kidneys

Published:February 26, 2023DOI:https://doi.org/10.1016/j.cvsm.2023.01.006

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Veterinary Clinics: Small Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Gilbertson D.T.
        • Liu J.
        • Xue J.L.
        • et al.
        Projecting the number of patients with end-stage renal disease in the United States to the year 2015.
        J Am Soc Nephrol. 2005; 16: 3736-3741
        • Umanath K.
        • Lewis J.B.
        Update on Diabetic Nephropathy: Core Curriculum 2018.
        Am J Kidney Dis. 2018; 71: 884-895
        • Markus M.R.P.
        • Ittermann T.
        • Baumeister S.E.
        • et al.
        Prediabetes is associated with microalbuminuria, reduced kidney function and chronic kidney disease in the general population: The KORA (Cooperative Health Research in the Augsburg Region) F4-Study.
        Nutr Metab Cardiovasc Dis. 2018; 28: 234-242
        • American Diabetes A.
        6. Glycemic Targets: Standards of Medical Care in Diabetes-2018.
        Diabetes Care. 2018; 41: S55-S64
        • Diabetes C.
        • Complications Trial Research G.
        • Nathan D.M.
        • et al.
        The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus.
        N Engl J Med. 1993; 329: 977-986
        • Stratton I.M.
        • Adler A.I.
        • Neil H.A.
        • et al.
        Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study.
        BMJ. 2000; 321: 405-412
        • Alsahli M.
        • Gerich J.E.
        Renal glucose metabolism in normal physiological conditions and in diabetes.
        Diabetes Res Clin Pract. 2017; 133: 1-9
        • Thomson S.C.
        • Blantz R.C.
        Glomerulotubular balance, tubuloglomerular feedback, and salt homeostasis.
        J Am Soc Nephrol. 2008; 19: 2272-2275
        • Sallstrom J.
        • Carlsson P.O.
        • Fredholm B.B.
        • et al.
        Diabetes-induced hyperfiltration in adenosine A(1)-receptor deficient mice lacking the tubuloglomerular feedback mechanism.
        Acta Physiol (Oxf). 2007; 190: 253-259
        • Vallon V.
        • Schroth J.
        • Satriano J.
        • et al.
        Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus.
        Nephron Physiol. 2009; 111: p30-p38
        • Vallon V.
        • Blantz R.C.
        • Thomson S.
        Glomerular hyperfiltration and the salt paradox in early [corrected] type 1 diabetes mellitus: a tubulo-centric view.
        J Am Soc Nephrol. 2003; 14: 530-537
        • Tonneijck L.
        • Muskiet M.H.
        • Smits M.M.
        • et al.
        Glomerular Hyperfiltration in Diabetes: Mechanisms, Clinical Significance, and Treatment.
        J Am Soc Nephrol. 2017; 28: 1023-1039
        • Altay S.
        • Onat A.
        • Ozpamuk-Karadeniz F.
        • et al.
        Renal "hyperfiltrators" are at elevated risk of death and chronic diseases.
        BMC Nephrol. 2014; 15: 160
        • Rigalleau V.
        • Garcia M.
        • Lasseur C.
        • et al.
        Large kidneys predict poor renal outcome in subjects with diabetes and chronic kidney disease.
        BMC Nephrol. 2010; 11: 3
        • Tuttle K.R.
        • Bruton J.L.
        • Perusek M.C.
        • et al.
        Effect of strict glycemic control on renal hemodynamic response to amino acids and renal enlargement in insulin-dependent diabetes mellitus.
        N Engl J Med. 1991; 324: 1626-1632
        • Fioretto P.
        • Mauer M.
        Histopathology of diabetic nephropathy.
        Semin Nephrol. 2007; 27: 195-207
        • Fioretto P.
        • Mauer M.
        • Brocco E.
        • et al.
        Patterns of renal injury in NIDDM patients with microalbuminuria.
        Diabetologia. 1996; 39: 1569-1576
        • Steinberg H.O.
        • Brechtel G.
        • Johnson A.
        • et al.
        Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release.
        J Clin Invest. 1994; 94: 1172-1179
        • Gepts W.
        • Toussaint D.
        Spontaneous diabetes in dogs and cats. A pathological study.
        Diabetologia. 1967; 3: 249-265
        • Nakayama H.
        • Uchida K.
        • Ono K.
        • et al.
        Pathological observation of six cases of feline diabetes mellitus.
        Nihon Juigaku Zasshi. 1990; 52: 819-822
        • Zini E.
        • Benali S.
        • Coppola L.
        • et al.
        Renal morphology in cats with diabetes mellitus.
        Vet Pathol. 2014; 51: 1143-1150
        • Layton A.T.
        • Laghmani K.
        • Vallon V.
        • et al.
        Solute transport and oxygen consumption along the nephrons: effects of Na+ transport inhibitors.
        Am J Physiol Renal Physiol. 2016; 311: F1217-F1229
        • Vallon V.
        • Richter K.
        • Blantz R.C.
        • et al.
        Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption.
        J Am Soc Nephrol. 1999; 10: 2569-2576
        • Garcia-Pastor C.
        • Benito-Martinez S.
        • Moreno-Manzano V.
        • et al.
        Mechanism and Consequences of The Impaired Hif-1alpha Response to Hypoxia in Human Proximal Tubular HK-2 Cells Exposed to High Glucose.
        Sci Rep. 2019; 9: 15868
        • Persson P.
        • Palm F.
        Hypoxia-inducible factor activation in diabetic kidney disease.
        Curr Opin Nephrol Hypertens. 2017; 26: 345-350
        • Lanaspa M.A.
        • Ishimoto T.
        • Cicerchi C.
        • et al.
        Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy.
        J Am Soc Nephrol. 2014; 25: 2526-2538
        • Cirillo P.
        • Gersch M.S.
        • Mu W.
        • et al.
        Ketohexokinase-dependent metabolism of fructose induces proinflammatory mediators in proximal tubular cells.
        J Am Soc Nephrol. 2009; 20: 545-553
        • Ishimoto T.
        • Lanaspa M.A.
        • Le M.T.
        • et al.
        Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice.
        Proc Natl Acad Sci U S A. 2012; 109: 4320-4325
        • Brownlee M.
        Biochemistry and molecular cell biology of diabetic complications.
        Nature. 2001; 414: 813-820
        • Griendling K.K.
        • Minieri C.A.
        • Ollerenshaw J.D.
        • et al.
        Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells.
        Circ Res. 1994; 74: 1141-1148
        • Cave A.C.
        • Brewer A.C.
        • Narayanapanicker A.
        • et al.
        NADPH oxidases in cardiovascular health and disease.
        Antioxid Redox Signal. 2006; 8: 691-728
        • Singh D.K.
        • Winocour P.
        • Farrington K.
        Oxidative stress in early diabetic nephropathy: fueling the fire.
        Nat Rev Endocrinol. 2011; 7: 176-184
        • Schleicher E.D.
        • Weigert C.
        Role of the hexosamine biosynthetic pathway in diabetic nephropathy.
        Kidney Int Suppl. 2000; 77: S13-S18
      1. Gal A. Gut Microbial Whole-Genome Gene Networks and Metabolic Pathways Analysis in Diabetic Cats. 2022:52. doi:10.1111/jvim.16541.

        • Inoguchi T.
        • Li P.
        • Umeda F.
        • et al.
        High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells.
        Diabetes. 2000; 49: 1939-1945
        • Schaffer S.W.
        • Jong C.J.
        • Mozaffari M.
        Role of oxidative stress in diabetes-mediated vascular dysfunction: unifying hypothesis of diabetes revisited.
        Vascul Pharmacol. 2012; 57: 139-149
        • Ding Y.
        • Choi M.E.
        Autophagy in diabetic nephropathy.
        J Endocrinol. 2015; 224: R15-R30
        • Xin W.
        • Li Z.
        • Xu Y.
        • et al.
        Autophagy protects human podocytes from high glucose-induced injury by preventing insulin resistance.
        Metabolism. 2016; 65: 1307-1315
        • Group A.S.
        • Cushman W.C.
        • Evans G.W.
        • et al.
        Effects of intensive blood-pressure control in type 2 diabetes mellitus.
        N Engl J Med. 2010; 362: 1575-1585
        • Xie X.
        • Atkins E.
        • Lv J.
        • et al.
        Effects of intensive blood pressure lowering on cardiovascular and renal outcomes: updated systematic review and meta-analysis.
        Lancet. 2016; 387: 435-443
        • Bolignano D.
        • Palmer S.C.
        • Navaneethan S.D.
        • et al.
        Aldosterone antagonists for preventing the progression of chronic kidney disease.
        Cochrane Database Syst Rev. 2014; 29: CD007004
        • Ruggenenti P.
        • Cravedi P.
        • Remuzzi G.
        The RAAS in the pathogenesis and treatment of diabetic nephropathy.
        Nat Rev Nephrol. 2010; 6: 319-330
        • Forrester S.J.
        • Booz G.W.
        • Sigmund C.D.
        • et al.
        Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology.
        Physiol Rev. 2018; 98: 1627-1738
        • Horiuchi M.
        • Akishita M.
        • Dzau V.J.
        Recent progress in angiotensin II type 2 receptor research in the cardiovascular system.
        Hypertension. 1999; 33: 613-621
        • Kaschina E.
        • Namsolleck P.
        • Unger T.
        AT2 receptors in cardiovascular and renal diseases.
        Pharmacol Res. 2017; 125: 39-47
        • Donoghue M.
        • Hsieh F.
        • Baronas E.
        • et al.
        A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9.
        Circ Res. 2000; 87: E1-E9
        • Hamming I.
        • Cooper M.E.
        • Haagmans B.L.
        • et al.
        The emerging role of ACE2 in physiology and disease.
        J Pathol. 2007; 212: 1-11
        • Rodrigues Prestes T.R.
        • Rocha N.P.
        • Miranda A.S.
        • et al.
        The Anti-Inflammatory Potential of ACE2/Angiotensin-(1-7)/Mas Receptor Axis: Evidence from Basic and Clinical Research.
        Curr Drug Targets. 2017; 18: 1301-1313
        • Rice G.I.
        • Thomas D.A.
        • Grant P.J.
        • et al.
        Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism.
        Biochem J. 2004; 383: 45-51
        • Fuchs S.
        • Xiao H.D.
        • Cole J.M.
        • et al.
        Role of the N-terminal catalytic domain of angiotensin-converting enzyme investigated by targeted inactivation in mice.
        J Biol Chem. 2004; 279: 15946-15953
        • Fuchs S.
        • Xiao H.D.
        • Hubert C.
        • et al.
        Angiotensin-converting enzyme C-terminal catalytic domain is the main site of angiotensin I cleavage in vivo.
        Hypertension. 2008; 51: 267-274
        • Romero C.A.
        • Kumar N.
        • Nakagawa P.
        • et al.
        Renal release of N-acetyl-seryl-aspartyl-lysyl-proline is part of an antifibrotic peptidergic system in the kidney.
        Am J Physiol Renal Physiol. 2019; 316: F195-F203
        • Zuo Y.
        • Chun B.
        • Potthoff S.A.
        • et al.
        Thymosin beta4 and its degradation product, Ac-SDKP, are novel reparative factors in renal fibrosis.
        Kidney Int. 2013; 84: 1166-1175
        • Srivastava S.P.
        • Goodwin J.E.
        • Kanasaki K.
        • et al.
        Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs.
        Genes. 2020; 11https://doi.org/10.3390/genes11020211
        • Ye M.
        • Wysocki J.
        • Naaz P.
        • et al.
        Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice: a renoprotective combination?.
        Hypertension. 2004; 43: 1120-1125
        • Ye M.
        • Wysocki J.
        • William J.
        • et al.
        Glomerular localization and expression of Angiotensin-converting enzyme 2 and Angiotensin-converting enzyme: implications for albuminuria in diabetes.
        J Am Soc Nephrol. 2006; 17: 3067-3075
        • Bloodworth Jr., J.M.
        • Engerman R.L.
        • Powers K.L.
        Experimental diabetic microangiopathy. I. Basement membrane statistics in the dog.
        Diabetes. 1969; 18: 455-458
        • Engerman R.L.
        • Kern T.S.
        Hyperglycemia and development of glomerular pathology: diabetes compared with galactosemia.
        Kidney Int. 1989; 36: 41-45
        • Engerman R.L.
        • Kern T.S.
        • Garment M.B.
        Capillary basement membrane in retina, kidney, and muscle of diabetic dogs and galactosemic dogs and its response to 5 years aldose reductase inhibition.
        J Diabetes Complications. 1993; 7: 241-245
        • Gaber L.
        • Walton C.
        • Brown S.
        • et al.
        Effects of different antihypertensive treatments on morphologic progression of diabetic nephropathy in uninephrectomized dogs.
        Kidney Int. 1994; 46: 161-169
        • Kern T.S.
        • Engerman R.L.
        Kidney morphology in experimental hyperglycemia.
        Diabetes. 1987; 36: 244-249
        • Molon-Noblot S.
        • Laroque P.
        • Prahalada S.
        • et al.
        Morphological changes in the kidney of dogs chronically exposed to exogenous growth hormone.
        Toxicol Pathol. 2000; 28: 510-517
        • Sloan J.M.
        • Oliver I.M.
        Progestogen-induced diabetes in the dog.
        Diabetes. 1975; 24: 337-344
        • Steffes M.W.
        • Buchwald H.
        • Wigness B.D.
        • et al.
        Diabetic nephropathy in the uninephrectomized dog: microscopic lesions after one year.
        Kidney Int. 1982; 21: 721-724
        • Chen H.M.
        • Liu Z.H.
        • Zeng C.H.
        • et al.
        Podocyte lesions in patients with obesity-related glomerulopathy.
        Am J Kidney Dis. 2006; 48: 772-779
        • de Vries A.P.
        • Ruggenenti P.
        • Ruan X.Z.
        • et al.
        Fatty kidney: emerging role of ectopic lipid in obesity-related renal disease.
        Lancet Diabetes Endocrinol. May 2014; 2: 417-426
        • Jiang T.
        • Wang Z.
        • Proctor G.
        • et al.
        Diet-induced obesity in C57BL/6J mice causes increased renal lipid accumulation and glomerulosclerosis via a sterol regulatory element-binding protein-1c-dependent pathway.
        J Biol Chem. 2005; 280: 32317-32325
        • Thompson J.C.
        • Johnstone A.C.
        • Jones B.R.
        • et al.
        The ultrastructural pathology of five lipoprotein lipase-deficient cats.
        J Comp Pathol. 1989; 101: 251-262
        • Awad A.S.
        • Kinsey G.R.
        • Khutsishvili K.
        • et al.
        Monocyte/macrophage chemokine receptor CCR2 mediates diabetic renal injury.
        Am J Physiol Renal Physiol. 2011; 301: F1358-F1366
        • You H.
        • Gao T.
        • Cooper T.K.
        • et al.
        Macrophages directly mediate diabetic renal injury.
        Am J Physiol Renal Physiol. 2013; 305: F1719-F1727
        • Berthier C.C.
        • Zhang H.
        • Schin M.
        • et al.
        Enhanced expression of Janus kinase-signal transducer and activator of transcription pathway members in human diabetic nephropathy.
        Diabetes. 2009; 58: 469-477
        • Woroniecka K.I.
        • Park A.S.
        • Mohtat D.
        • et al.
        Transcriptome analysis of human diabetic kidney disease.
        Diabetes. 2011; 60: 2354-2369
        • Ortiz-Munoz G.
        • Lopez-Parra V.
        • Lopez-Franco O.
        • et al.
        Suppressors of cytokine signaling abrogate diabetic nephropathy.
        J Am Soc Nephrol. 2010; 21: 763-772
        • Zhang H.
        • Nair V.
        • Saha J.
        • et al.
        Podocyte-specific JAK2 overexpression worsens diabetic kidney disease in mice.
        Kidney Int. 2017; 92: 909-921
        • Pagtalunan M.E.
        • Miller P.L.
        • Jumping-Eagle S.
        • et al.
        Podocyte loss and progressive glomerular injury in type II diabetes.
        J Clin Invest. 1997; 99: 342-348
        • Steffes M.W.
        • Schmidt D.
        • McCrery R.
        • et al.
        International Diabetic Nephropathy Study G. Glomerular cell number in normal subjects and in type 1 diabetic patients.
        Kidney Int. 2001; 59: 2104-2113
        • Thomas M.C.
        • Brownlee M.
        • Susztak K.
        • et al.
        Diabetic kidney disease.
        Nat Rev Dis Primers. 2015; 1: 15018
        • Habenicht L.M.
        • Webb T.L.
        • Clauss L.A.
        • et al.
        Urinary cytokine levels in apparently healthy cats and cats with chronic kidney disease.
        J Feline Med Surg. 2013; 15: 99-104
        • Ebert T.
        • Pawelzik S.-C.
        • Witasp A.
        • et al.
        Inflammation and Premature Ageing in Chronic Kidney Disease.
        Toxins. 2020; 12: 227
        • Rohm T.V.
        • Meier D.T.
        • Olefsky J.M.
        • et al.
        Inflammation in obesity, diabetes, and related disorders.
        Immunity. 2022; 55: 31-55
        • Herder C.
        • Hermanns N.
        Subclinical inflammation and depressive symptoms in patients with type 1 and type 2 diabetes.
        Semin Immunopathol. 2019; 41: 477-489
        • Thomas M.C.
        • Cooper M.E.
        • Zimmet P.
        Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease.
        Nat Rev Nephrol. 2016; 12: 73-81
        • Hume D.Z.
        • Drobatz K.J.
        • Hess R.S.
        Outcome of dogs with diabetic ketoacidosis: 127 dogs (1993-2003).
        J Vet Intern Med. 2006; 20: 547-555
        • Bruskiewicz K.A.
        • Nelson R.W.
        • Feldman E.C.
        • et al.
        Diabetic ketosis and ketoacidosis in cats: 42 cases (1980-1995).
        J Am Vet Med Assoc. 1997; 211: 188-192
        • Hindar C.
        • Chang Y.-M.
        • Syme H.M.
        • et al.
        The association of bacteriuria with survival and disease progression in cats with azotemic chronic kidney disease.
        J Vet Intern Med. 2020; 34: 2516-2524
        • White J.D.
        • Stevenson M.
        • Malik R.
        • et al.
        Urinary tract infections in cats with chronic kidney disease.
        J Feline Med Surg. 2013; 15: 459-465
        • Geerlings S.
        • Fonseca V.
        • Castro-Diaz D.
        • et al.
        Genital and urinary tract infections in diabetes: Impact of pharmacologically-induced glucosuria.
        Diabetes Res Clin Pract. 2014; 103: 373-381
        • Geerlings S.E.
        • Brouwer E.C.
        • Gaastra W.
        • et al.
        Effect of glucose and pH on uropathogenic and non-uropathogenic Escherichia coli: studies with urine from diabetic and non-diabetic individuals.
        J Med Microbiol. 1999; 48: 535-539
        • Turan H.
        • Serefhanoglu K.
        • Torun A.N.
        • et al.
        Frequency, risk factors, and responsible pathogenic microorganisms of asymptomatic bacteriuria in patients with type 2 diabetes mellitus.
        Jpn J Infect Dis. 2008; 61: 236-238
        • Geerlings S.E.
        • Stolk R.P.
        • Camps M.J.
        • et al.
        Risk factors for symptomatic urinary tract infection in women with diabetes.
        Diabetes Care. 2000; 23: 1737-1741
        • Mayer-Roenne B.
        • Goldstein R.E.
        • Erb H.N.
        Urinary tract infections in cats with hyperthyroidism, diabetes mellitus and chronic kidney disease.
        J Feline Med Surg. 2007; 9: 124-132
        • Bailiff N.L.
        • Nelson R.W.
        • Feldman E.C.
        • et al.
        Frequency and Risk Factors for Urinary Tract Infection in Cats with Diabetes Mellitus.
        J Vet Intern Med. 2006; 20: 850
        • Weese J.S.
        • Blondeau J.
        • Boothe D.
        • et al.
        International Society for Companion Animal Infectious Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats.
        Vet J. 2019; 247: 8-25
        • Luu T.
        • Albarillo F.S.
        Asymptomatic Bacteriuria: Prevalence, Diagnosis, Management, and Current Antimicrobial Stewardship Implementations.
        Am J Med. 2022; 135: e236-e244
        • Chakrabarti S.
        • Syme H.M.
        • Elliott J.
        Clinicopathological Variables Predicting Progression of Azotemia in Cats with Chronic Kidney Disease.
        J Vet Intern Med. 2012; 26: 275-281
        • Miyakawa H.
        • Ogawa M.
        • Sakatani A.
        • et al.
        Evaluation of the progression of non-azotemic proteinuric chronic kidney disease in dogs.
        Res Vet Sci. 2021; 138: 11-18
        • King J.N.
        • Font A.
        • Rousselot J.F.
        • et al.
        Effects of Benazepril on Survival of Dogs with Chronic Kidney Disease: A Multicenter, Randomized, Blinded, Placebo-Controlled Clinical Trial.
        J Vet Intern Med. 2017; 31: 1113-1122
        • Williams T.L.
        • Peak K.J.
        • Brodbelt D.
        • et al.
        Survival and the Development of Azotemia after Treatment of Hyperthyroid Cats.
        J Vet Intern Med. 2010; 24: 863-869
        • Feldman E.C.
        Textbook of Veterinary Internal Medicine.
        Polyuria and polydipsia. 1. Elsevier, 2009
        • O'Neill D.G.
        • Elliott J.
        • Church D.B.
        • et al.
        Chronic Kidney Disease in Dogs in UK Veterinary Practices: Prevalence, Risk Factors, and Survival.
        J Vet Intern Med. 2013; 27: 814-821
        • Herring I.P.
        • Panciera D.L.
        • Werre S.R.
        Longitudinal Prevalence of Hypertension, Proteinuria, and Retinopathy in Dogs with Spontaneous Diabetes Mellitus.
        J Vet Intern Med. 2014; 28: 488-495
        • Priyanka M.
        • Jeyaraja K.
        • Thirunavakkarasu P.S.
        Abnormal renovascular resistance in dogs with diabetes mellitus: correlation with glycemic status and proteinuria.
        Iran J Vet Res. Fall. 2018; 19: 304-309
        • Bartlett P.C.
        • Van Buren J.W.
        • Bartlett A.D.
        • et al.
        Case-control study of risk factors associated with feline and canine chronic kidney disease.
        Vet Med Int. 2010; 20: 2010
        • Greene J.P.
        • Lefebvre S.L.
        • Wang M.
        • et al.
        Risk factors associated with the development of chronic kidney disease in cats evaluated at primary care veterinary hospitals.
        J Am Vet Med Assoc. 2014; 244: 320-327
        • Pérez-López L.
        • Boronat M.
        • Melián C.
        • et al.
        Assessment of the association between diabetes mellitus and chronic kidney disease in adult cats.
        J Vet Intern Med. 2019; 33: 1921-1925