Advertisement
Review Article| Volume 53, ISSUE 2, P279-298, March 2023

Diagnostic Tests Used During the Ocular Examination

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Veterinary Clinics: Small Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ghaffari M.
        • Malmasi A.
        • Bokaie S.
        Effect of acepromazine or xylazine on tear production as measured by Schirmer tear test in normal cats.
        Vet Ophthalmol. 2010; 13: 1-3
        • Santos P.
        • de Sousa K.
        • Pinto R.
        • et al.
        Comparison of pupil diameter and tear production in dogs treated with acepromazine, tramadol and their combination.
        Rev Ceres. 2013; 60: 166-172
        • Dodam J.
        • Branson K.
        • Martin D.
        Effects of intramuscular sedative and opioid combinations on tear production in dogs.
        Vet Ophthalmol. 1998; 1: 57-59
        • Ghaffari M.
        • Madani S.
        • Trbolova A.
        • et al.
        Effects of intramuscular chlorpromazine alone and chlorpromazine–morphine combination on Schirmer tear test results in clinically normal dogs.
        Comp Clin Pathol. 2011; 20: 413-415
        • Di Pietro S.
        • Giannetto C.
        • Falcone A.
        • et al.
        Dexmedetomidine and Tear Production: Evaluation in Dogs as Spontaneous Model for Ocular Surface Disorders.
        Vet Sci. 2021; 8: 28-37
        • Evans P.
        • Lynch G.
        • Labelle P.
        Effects of oral administration of diphenhydramine on pupil diameter, intraocular pressure, tear production, tear film quality, conjunctival goblet cell density, and corneal sensitivity of clinically normal adult dogs.
        Am J Vet Res. 2012; 73: 1983-1986
        • Malmasi A.
        • Ghaffari S.
        Lack of effects of intramuscular medetomidine on intraocular pressure in clinically normal cats.
        J Feline Med Surg. 2016; 18: 315-317
        • Wallin-Hakanson N.
        • Wallin-Hakanson B.
        The effects of topical tropicamide and systemic medetomidine, followed by atipamezole reversal, on pupil size and intraocular pressure in normal dogs.
        Vet Ophthalmol. 2001; 4: 3-6
        • Kanda T.
        • iguchi A.
        • Yoshioka C.
        • et al.
        Effects of medetomidine and xylazine on intraocular pressure and pupil size in healthy Beagle dogs.
        Vet Anaesth Analg. 2015; 42: 623-628
        • Sanchez R.
        • Mellor D.
        • Mould
        Effects of medetomidine and medetomidine-butorphanol combination on Schirmer tear test 1 readings in dogs.
        Vet Ophthalmol. 2006; 9: 33-37
        • Soontornvipart K.
        • Rau P.
        • Kecova E.
        • et al.
        Effect of Anaesthetic Premedication with Medetomidine-Buprenorphine on the Aqueous Tear Production in Dogs.
        Acta Vet Brno. 2003; 72: 267-272
      1. Klein A, Salpeter E, Simons A, et al. Effects of Oral Trazodone on Ocular Parameters in Healthy Cats. Conference Proceedings 50th Annual Scientific Meeting of the American College of Veterinary Ophthalmologists. Maui (Hawaii). Nov 6-9, 2019.

      2. Pelych L, MacLeese J, La Croix N. Effects of oral trazodone on canine tear production and intraocular pressure. Conference Proceedings 49th Annual Scientific Meeting of the American College of Veterinary Ophthalmologists. Minneapolis (Minnesota). Sept 26-29, 2018.

      3. Simmerman K, Silva E, Murray J, et al. Effects of oral trazodone hydrochloride on tear production, intraocular pressure, pupil size, heart rate, and respiratory rate in healthy dogs. Conference Proceedings Annual Scientific Meeting of the European College of Veterinary Ophthalmologists. Florence (Italy). May 10-13, 2018.

        • Douet J.-Y.
        • Regnier A.
        • Dongay A.
        • et al.
        Effect of sedation with butorphanol on variables pertaining to the ophthalmic examination in dogs.
        Vet Ophthalmol. 2018; 21: 452-458
        • Meekins M.
        • Overton T.
        • Rankin A.
        • et al.
        Effect of oral administration of carprofen on intraocular pressure in normal dogs.
        J Vet Pharmacol Therap. 2016; 39: 344-349
        • Klauss G.
        • Giuliano E.
        • Morre C.
        • et al.
        Keratoconjunctivitis sicca associated with administration of etodolac in dogs: 211 cases (1992–2002).
        J Am Vet Med Assoc. 2007; 230: 541-547
        • Biricik H.
        • Ceylan C.
        • Sakar M.
        Effects of pethidine and fentanyl on tearproduction in dogs.
        Vet Rec. 2004; 155: 564-565
        • Shukla A.
        • Pinard C.
        • Flynn B.
        • et al.
        Effects of orally administered gabapentin, tramadol, and meloxicam on ocular variables in healthy dogs.
        Am J Vet Res. 2020; 81: 973-984
      4. Rajotte S, Salpeter, Martins B, et al. Effect of Gabapentin on Ocular Parameters Following Oral Administration in Healthy Dogs. Conference Proceedings 50th Annual Scientific Meeting of the American College of Veterinary Ophthalmologists. Maui (Hawaii). Nov 6-9, 2019.

        • Ruiz T.
        • Peres T.
        • da Silva Campos W.
        • et al.
        Effects of tramadol on tear production, intraocular pressure, and pupil size in dogs: clinical study.
        Ciênc Rural. 2015; 45: 724-729
        • Visser H.
        • Tofflemire K.
        • Love-Myers K.
        • et al.
        Schirmer tear test I in dogs: results comparing placement in the ventral vs. dorsal conjunctival fornix.
        Vet Ophthalmol. 2017; 20: 522-525
      5. Iwashaita H, Wakaiki S, Kazama Y, et al. When should we measure the schirmer tear test? Conference Proceedgins 48th Annual Conference of the American College of Veterinary Ophthalmologists. Baltimore (Maryland). October 11-14, 2017.

        • Lewin A.
        • Liu C.
        • Yoon A.
        • et al.
        Schirmer strip wetting length varies by commercial manufacturer.
        Vet Ophthalmol. 2020; 23: 1031-1035
        • Yoon A.
        • Liu C.
        • Carter R.
        • et al.
        Environmental relative humidity affects Schirmer tear test results in normal dogs.
        Vet Ophthalmol. 2020; 23: 923-926
        • Broadwater J.
        • Colitz C.
        • Carastro S.
        • et al.
        Tear production in normal juvenile dogs.
        Vet Ophthalmol. 2010; 13: 321-325
        • Verboven C.
        • Djajadiningrat-Laanen S.
        • Teske E.
        • et al.
        Development of tear production and intraocular pressure in healthy canine neonates.
        Vet Ophthalmol. 2014; 17: 426-431
        • Hartley C.
        • Williams D.
        • Adams V.
        Effect of age, gender, weight, and time of day on tear production in normal dogs.
        Vet Ophthalmol. 2006; 9: 53-57
        • Hakanason N.W.
        • Arnesson K.
        Temporal variation in tear production in normal beagles dogs as determined by Schirmer tear test.
        Vet Comp Ophthalmol. 1997; 7: 196-203
        • Giannetto C.
        • Piccione G.
        • Giudice E.
        Daytime profile of the intraocular pressure and tear production in normal dog.
        Vet Ophthalmol. 2009; 12: 302-305
        • Hamor R.
        • Roberts S.
        • Severin G.
        • et al.
        Evaluation of results for Schirmer tear tests conducted with and without application of a topical anesthetic in clinically normal dogs of 5 breeds.
        Am J Vet Res. 2000; 61: 1422-1425
        • Berger S.
        • King K.
        The Fluctuation of Tear Production in the Dog.
        J Am Anim Hosp Assoc. 1998; 34: 79-83
        • Bolzanni H.
        • Oriá A.
        • Raposo A.
        • et al.
        Aqueous tear assessment in dogs: Impact of cephalic conformation, inter-test correlations, and test-retest repeatability.
        Vet Ophthalmol. 2020; 23: 534-543
        • Cullen C.
        • Ihle S.
        • Webb A.
        • et al.
        Keratoconjunctival effects of diabetes mellitus in dogs.
        Vet Ophthalmol. 2005; 8: 215-224
        • Williams D.
        • Pierce V.
        • Mellor P.
        • et al.
        Reduced tear production in three canine endocrinopathies.
        J Small Anim Pract. 2007; 4: 252-256
        • Chandler J.
        • van der Woerdt A.
        • Prittie J.
        • et al.
        Preliminary evaluation of tear production in dogs hospitalized in an intensive care unit.
        J Vet Emerg Crit Care. 2013; 23: 274-279
        • Williams D.
        • Burg P.
        Tear production and intraocular pressure in canine eyes with corneal ulceration.
        Open Vet J. 2017; 7: 117-125
        • Sebbag L.
        • Uhl l
        • Schneider B.
        • et al.
        Investigation of Schirmer tear test-1 for measurement of tear production in cats in various environmental settings and with different test durations.
        J Am Vet Med Assoc. 2020; 256: 681-686
        • Rajaei S.
        • Faghihi H.
        • Williams D.
        • et al.
        Evaluation of tear production using the Schirmer tear test I in healthy cats; effect of age, life stage, sex, breed and neuter status.
        Vet Rec. 2019; 184: 799-804
        • Uhl L.
        • Saito A.
        • Iwashita H.
        • et al.
        Clinical features of cats with aqueous tear deficiency: a retrospective case series of 10 patients (17 eyes).
        J Feline Med Surg. 2019; 21: 944-950
        • Lim C.
        • Reilly C.
        • Thomasy S.
        • et al.
        Effects of feline herpesvirus type 1 on tear film break-up time, Schirmer tear test results, and conjunctival goblet cell density in experimentally infected cats.
        Am J Vet Res. 2009; 70: 394-403
        • Shinzawa M.
        • Dogru M.
        • Miyasaka K.
        • et al.
        The Application of Strip Meniscometry to the Evaluation of Tear Volume in Mice.
        Invest Ophthalmol Vis Sci. 2019; 60: 2088-2091
        • Oria A.
        • Raposo A.
        • da Silva Cardoso de Brito V.
        • et al.
        Tear Meniscometry Test Wild Animals Ciênc Rural. 2019; 49: 2-5
      6. Miller R, Hofmann I, Dunbar J. Comparative tests of canine tear film status using the I-strip tear test and the Schirmer tear test Conference Proceedings 48th Annual Conference of the American College of Veterinary Ophthalmologists. Baltimore (Maryland). October 11-14, 2017.

        • Miyasaka K.
        • Kazama Y.
        • Iwashita H.
        • et al.
        A novel strip meniscometry method for measuring aqueous tear volume in dogs: Clinical correlations with the Schirmer tear and phenol red thread tests.
        Vet Ophthalmol. 2019; 22: 864-871
        • Rajaei A.
        • Mood M.
        • Asadi F.
        • et al.
        Strip meniscometry in dogs, cats, and rabbits.
        Vet Ophthalmol. 2018; 21: 210-213
        • Gelatt K.N.
        • Peiffer R.L.
        • Erickson J.L.
        • et al.
        Evaluation of tear formation in the dog, using a modification of the Schirmer tear test.
        J Am Vet Med Assoc. 1975; 166: 368-370
        • Saito A.
        • Kotani T.
        Estimation of lacrimal level and testing methods on normal beagles.
        Vet Ophthalmol. 2001; 4: 7-11
        • McLaughlin S.
        • Brightman A.
        • Helper L.
        • et al.
        Effect of removal of lacrimal and third eyelid glands on Schirmer tear test results in cats.
        J Am Vet Med Assoc. 1988; 193: 820-822
        • Feenstra R.
        • Tseng S.
        Comparison of fluorescein and rose bengal staining.
        Ophthalmol. 1992; 99: 605-617
        • Ferreira T.
        • Ghignatti J.
        • dos Santos L.
        • et al.
        2018Antimicrobial activity of topical dyes used in clinical veterinary ophthalmology.
        Vet Ophthalmol. 2020; 23: 497-505
        • Mironovichi M.
        • Mitchell M.
        • Lui C.-C.
        • et al.
        The effect of topical ophthalmic proparacaine, fluorescein, and tropicamide on subsequent bacterial cultures in healthy dogs.
        Vet Ophthalmol. 2021; 00: 1-8
        • Grahn B.
        • Sisler S.
        • Storey E.
        Qualitative tear film and conjunctival goblet cell assessment of cats with corneal sequestra.
        Vet Ophthalmol. 2005; 8: 167-170
        • Gelatt K.N.
        Vital staining of the canine cornea and conjunctiva with rose bengal.
        J Am Anim Hosp Assoc. 1972; 8: 17-22
        • Chodosh J.
        • Dix R.D.
        • Howell R.C.
        • et al.
        Staining characteristics and antiviral activity of sulforhodamine b and lissamine green b.
        Invest Ophth Vis Sci. 1994; 35: 1046-1058
        • Smith S.
        • Holt E.
        • Aguirre G.
        Conjunctival staining with lissamine green as a predictor of tear film deficiency in dogs.
        Vet Ophthalmol. 2020; 23: 624-631
        • Kontiola A.
        A new electromechanical method for measuring intraocular pressure.
        Documenta Ophthalmologica. 1997; 93: 265-276
        • Rajaei S.
        • Asadi F.
        • Rajabian M.
        • et al.
        Effect of body position, eyelid manipulation, and manual jugular compression on intraocular pressure in clinically normal cats.
        Vet Ophthalmol. 2018; 21: 140-143
        • Rodrigues B.
        • Montiani-Ferreira F.
        • Bortolini M.
        • et al.
        Intraocular pressure measurements using the TONOVET® rebound tonometer: Influence of the probe-cornea distance.
        Vet Ophthalmol. 2021; 24: 175-185
        • McLellan G.
        • Kemmerlinga J.
        • Kiland J.
        Validation of the TonoVetR Rebound Tonometer in Normal and Glaucomatous Cats.
        Vet Ophthalmol. 2013; 16: 111-118
        • Nagata N.
        • Yuki M.
        • Hasegawa T.
        In Vitro and In Vivo Comparison of Applanation Tonometry and Rebound Tonometry in Dogs.
        J Vet Med Sci. 2011; 73: 1585-1589
        • von Spiessen L.
        • Karck J.
        • Rohn K.
        • et al.
        Clinical comparison of the TonoVet® rebound tonometer and the Tono-Pen Vet® applanation tonometer in dogs and cats with ocular disease: glaucoma or corneal pathology.
        Vet Ophthalmol. 2015; 18: 20-27
        • Tofflemire K.
        • Wang J.
        • Jens J.
        • et al.
        Evaluation of three hand-held tonometers in normal canine eyes.
        Vet J. 2017; 224: 7-10
        • Guresh A.
        • Horvath S.
        • Gemensky-Metzler A.
        • et al.
        The effect of central corneal thickness on intraocular pressure values using various tonometers in the dog.
        Vet Ophthalmol. 2021; 24: 154-161
        • Minella A.
        • Kiland J.
        • Gloe S.
        • et al.
        Validation and comparison of four handheld tonometers in normal ex vivo canine eyes.
        Vet Ophthalmol. 2021; 24: 162-170
        • Ben-Shlomo G.
        • Muirhead S.
        Estimation of intraocular pressure in normal canine eyes utilizing the newly introduced TonoVet Plus and TonoPen Avia, and their comparison to the established TonoVet.
        Vet Ophthalmol. 2021; 24: 171-174
        • Shim J.
        • Kang S.
        • Park Y.
        • et al.
        Comparative intraocular pressure measurements using three different rebound tonometers through in an ex vivo analysis and clinical trials in canine eyes.
        Vet Ophthalmol. 2021; 24: 186-193
        • Adelman S.
        • Shinsako D.
        • Kilanda J.
        • et al.
        The Post-Natal Development of Intraocular Pressure in Normal Domestic Cats (Felis catus) and in Feline Congenital Glaucoma.
        Exp Eye Res. 2018; 166: 70-73
        • Gelatt K.
        • MacKay E.
        Distribution of intraocular pressure in dogs.
        Vet Ophthalmol. 1998; 1: 109-114
        • Garzon-Ariza A.
        • Guisado A.
        • Galan A.
        • et al.
        Diurnal variations in intraocular pressure and central corneal thickness and the correlation between these factors in dogs.
        Vet Ophthalmol. 2018; 21: 464-470
        • Broadwater J.
        • Schorling J.
        • Herring I.
        • et al.
        Effect of body position on intraocular pressure in dogs without glaucoma.
        Am J Vet Res. 2008; 69: 527-530
        • Pe’er O.
        • Chiu E.
        • Arad D.
        • et al.
        Does the order of intraocular pressure measurement affect tonometry results?.
        Vet Ophthalmol. 2021; 24: 146-153
        • Pauli A.
        • Bentley E.
        • Diehl K.
        • et al.
        Effects of the Application of Neck Pressure by a Collar or Harness on Intraocular Pressure in Dogs.
        J Am Anim Hosp Assoc. 2006; 42: 207-211
        • Oliveira1 J.
        • Montiani-Ferreira F.
        • Williams D.
        The influence of the tonometer position on canine intraocular pressure measurements using the Tonovet® rebound tonometer.
        Open Vet J. 2018; 8: 68-76
        • Leiva M.
        • Naranjo C.
        • Peña M.
        Comparison of the rebound tonometer (ICare®) to the applanation tonometer (Tonopen XL®) in normotensive dogs.
        Vet Ophthalmol. 2006; 9: 7-21
        • Miller P.
        • Pickett P.
        • Majors L.
        • Kurzman I.
        Evaluation of two applanation tonometers in cats.
        Am J Vet Res. 1991; 52: 1917-1921
        • Ghaffari M.
        • Gherekhloo A.
        Effect of body position on intraocular pressure in clinically normal cats.
        J Fel Med Surg. 2018; 20: 749-751
        • Rusanen E.
        • Florin M.
        • Hässig M.
        • et al.
        Evaluation of a rebound tonometer (Tonovet®) in clinically normal cat eyes.
        Vet Ophthalmol. 2010; 13: 31-36
        • Martin C.
        Gonioscopy and anatomical correlations of the drainage angle of the dog.
        J Small Anim Pract. 1969; 10: 171-184
        • Bedford P.
        Gonioscopy in the dog.
        J Small Anim Pract. 1977; 18: 615-629
        • McLellan G.
        • Miller P.
        Feline glaucoma—a comprehensive review.
        Vet Ophthalmol. 2011; 14: 15-29
        • Bedford P.
        The aetiology of primary glaucoma in the dog.
        J Small Anim Pract. 1975; 16: 217-239
        • Pearl R.
        • Gould D.
        • Spiess B.
        Progression of pectinate ligament dysplasia over time in two populations of Flat-Coated Retrievers.
        Vet Ophthalmol. 2015; 18: 6-12
        • Oliver J.
        • Ekiri A.
        • Mellersh C.
        Pectinate ligament dysplasia in the Border Collie, Hungarian Vizsla and Golden Retriever.
        Vet Rec. 2017; 180: 279-283
        • Wood J.
        • Lakhani K.
        • Mason I.
        • Barnett K.
        Relationship of the degree of goniodysgenesis and other ocular measurements to glaucoma in Great Danes.
        Am J Vet Res. 2001; 62: 1493-1499
        • Trost K.
        • Peiffer Jr., R.
        • Nell B.
        Goniodysgenesis associated with primary glaucoma in an adult European Short-haired cat.
        Vet Ophthalmol. 2007; 10: 3-7
        • Park S.
        • Sledge D.
        • Colleen Monahan C.
        • et al.
        Primary angle-closure glaucoma with goniodysgenesis in a Beagle dog.
        BMC Vet Res. 2019; 15: 62-75
        • Cynthia S.
        • Cook L.
        • Wilkie D.A.
        Treatment of presumed iris melanoma in dogs by diode laser photocoagulation: 23 cases.
        Vet Ophthalmol. 1999; 2: 217-225
        • Featherstone H.
        • Renwick P.
        • Heinrich C.
        • et al.
        Efficacy of lamellar resection, cryotherapy, and adjunctive grafting for the treatment of canine limbal melanoma.
        Vet Ophthalmol. 2009; 12: 65-72
        • Oliver J.
        • Cottrell B.
        • Newton J.
        • et al.
        Gonioscopy in the dog: inter-examiner variability and the search for a grading scheme.
        J Small Anim Pract. 2017; 58: 652-658
        • Gibson T.E.
        • Roberts S.M.
        • Severin G.A.
        • et al.
        Comparison of gonioscopy and ultrasound biomicroscopy for evaluating the iridocorneal angle in dogs.
        J Am Vet Med Assoc. 1998; 213: 635-638
        • Hasegawa T.
        • Kawata M.
        • Ota M.
        Ultrasound biomicroscopic findings of the iridocorneal angle in live healthy and glaucomatous dogs.
        J Vet Med Sci. 2015; 77: 1625-1631
        • Moeller E.
        • Blocker T.
        • Esson D.
        • et al.
        Postoperative glaucoma in the Labrador Retriever: incidence, risk factors, and visual outcome following routine phacoemulsification.
        Vet Ophthalmol. 2011; 14: 385-394
        • Matusow R.
        • Herring I.
        • Pickett J.
        • et al.
        Effects of perioperative topical dorzolamide hydrochloride-timolol maleate administration on incidence and severity of postoperative ocular hypertension in dogs undergoing cataract extraction by phacoemulsification.
        J Am Vet Med Assoc. 2016; 249: 1040-1105
        • Scott E.
        • Esson D.
        • Fritz K.
        • et al.
        Major breed distribution of canine patients enucleated or eviscerated due to glaucoma following routine cataract surgery as well as common histopathologic findings within enucleated globes.
        Vet Ophthalmol. 2013; 16: 64-72
        • Sanders M.
        • Morton J.
        • Kaese H.
        • et al.
        Association between preoperative gonioscopic status and postoperative glaucoma after phacoemulsification in dogs: A retrospective cohort study of 505 eyes. Vet.
        Ophthalmol. 2021; 24: 39-49
        • Zibura A.
        • Robertson J.
        • Westermeyer H.
        Gonioscopic iridocorneal angle morphology and incidence of postoperative ocular hypertension and glaucoma in dogs following cataract surgery.
        Vet Ophthalmol. 2021; 24: 50-62
        • Cochet P.
        • Bonnet R.
        Corneal esthesiometery performance and practical importance.
        Bull Soc Ophtalmol Fr. 1961; 6: 541-550
        • Martin X.
        • Safran A.
        Corneal hypoesthesia.
        Surv Ophthalmol. 1988; 33: 28-40
        • Good K.L.
        • Maggs D.J.
        • Hollingsworth S.R.
        • et al.
        Corneal sensitivity in dogs with diabetes mellitus..
        Am J Vet Res. 2003; 64: 7-11
        • Costa D.
        • Peña M.
        • Ríos J.
        • et al.
        Evaluation of corneal anaesthesia after the application of topical 2 per cent lidocaine, 0.5 per cent bupivacaine and 1 per cent propivacaine in dogs.
        Vet Rec. 2014; 174: 478
        • Dorbandt D.
        • Labelle A.
        • Mitchell M.
        • et al.
        The effects of topical diclofenac, topical flurbiprofen, and humidity on corneal sensitivity in normal dogs.
        Vet Ophthalmol. 2017; 20: 160-170
        • Blocker T.
        • Hoffman A.
        • Schaeffer D.
        • et al.
        Corneal sensitivity and aqueous tear production in dogs undergoing evisceration with intraocular prosthesis placement.
        Vet Ophthalmol. 2007; 10: 147-154
        • Wieser B.
        • Tichy A.
        • Nell B.
        Correlation between corneal sensitivity and quantity of reflex tearing in cows, horses, goats, sheep, dogs, cats, rabbits, and guinea pigs.
        Vet Ophthalmol. 2013; 16: 251-262
        • Arnold T.
        • Wittenburg L.
        • Powell C.
        Effect of topical naltrexone 0.3% on corneal sensitivity and tear parameters in normal brachycephalic dogs.
        Vet Ophthalmol. 2014; 17: 328-333
        • Ledbetter E.
        • Marfurt C.
        • Dubielzig R.
        Metaherpetic corneal disease in a dog associated with partial limbal stem cell deficiency and neurotrophic keratitis.
        Vet Ophthalmol. 2013; 16: 282-288
        • Robin M.-C.
        • Papin Regnier A.
        Corneal anesthesia associated with topical application of 2% lidocaine nonophthalmic gel to healthy canine eyes.
        Vet Ophthalmol. 2020; 23: 560-566
        • Cantarella R.
        • de Oliveira J.
        • Dorbandt D.
        • et al.
        Effects of topical flurbiprofen sodium, diclofenac sodium, ketorolac tromethamine and benzalkonium chloride on corneal sensitivity in normal dogs.
        Open Vet J. 2017; 7: 254-260
        • Telle M.
        • Chen N.
        • Shinsako D.
        • et al.
        Relationship between corneal sensitivity, corneal thickness, corneal diameter, and intraocular pressure in normal cats and cats with congenital glaucoma.
        Vet Ophthalmol. 2019; 22: 4-12
        • Binder D.R.
        • Herring I.P.
        Duration of corneal anesthesia following topical administration of 0.5%proparacaine hydrochloride solution in clinically normal cats.
        Am J Vet Res. 2006; 67: 1780-1782
        • Roberts J.
        • Meekins J.
        • Roush J.
        • et al.
        Effects of topical instillation of 0.1% diclofenac sodium, 0.5% ketorolac tromethamine, and 0.03% flurbiprofen sodium on corneal sensitivity in ophthalmologically normal cats.
        Am J Vet Res. 2021; 82: 81-87