Advertisement
Review Article| Volume 53, ISSUE 2, P299-318, March 2023

An Update on the Ocular Surface Bacterial Microbiota in Small Animals

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Veterinary Clinics: Small Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Leis M.L.
        • Madruga G.M.
        • Costa M.O.
        The porcine corneal surface bacterial microbiome: A distinctive niche within the ocular surface.
        PLoS One. 2021; 16: e0247392
        • Staley J.T.
        • Konopka A.
        Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats.
        Annu Rev Microbiol. 1985; 39: 321-346
        • Lagkouvardos I.
        • Overmann J.
        • Clavel T.
        Cultured microbes represent a substantial fraction of the human and mouse gut microbiota.
        Gut Microbes. 2017; 8: 493-503
        • Brooks J.P.
        • Edwards D.J.
        • Harwich D.H.J.
        • et al.
        The truth about metagenomics: quantifying and counteracting bias in 16S rRNA studies.
        BMC Microbiol. 2015; 15: 66
        • Siegwald L.
        • Touzet H.
        • Lemoine Y.
        • et al.
        Assessment of Common and Emerging Bioinformatics Pipelines for Targeted Metagenomics.
        PLoS One. 2017; 12: e0169563
        • Doan T.
        • Akileswaran L.
        • Andersen D.
        • et al.
        Paucibacterial Microbiome and Resident DNA Virome of the Healthy Conjunctiva.
        Invest Ophthalmol Vis Sci. 2016; 57: 5116-5126
        • Shin H.
        • Price K.
        • Albert L.
        • et al.
        Changes in the Eye Microbiota Associated with Contact Lens Wearing.
        mBio. 2016; 7: e00198
        • Onerci Celebi O.
        • Celebi A.R.C.
        The Effect of Topical Ocular Anesthetic Proparacaine on Conjunctival and Nasal Mucosal Flora in Dry Eye Disease Patients.
        J Clin Med. 2018; 7
        • Pelosini L.
        • Treffene S.
        • Hollick E.J.
        Antibacterial activity of preservative-free topical anesthetic drops in current use in ophthalmology departments.
        Cornea. 2009; 28: 58-61
        • Fentiman K.E.
        • Rankin A.J.
        • Meekins J.M.
        • et al.
        Effects of topical ophthalmic application of 0.5% proparacaine hydrochloride on aerobic bacterial culture results for naturally occurring infected corneal ulcers in dogs.
        J Am Vet Med Assoc. 2018; 253: 1140-1145
        • Edwards S.G.
        • Maggs D.J.
        • Byrne B.A.
        • et al.
        Effect of topical application of 0.5% proparacaine on corneal culture results from 33 dogs, 12 cats, and 19 horses with spontaneously arising ulcerative keratitis.
        Vet Ophthalmol. 2019; 22: 415-422
        • Ledbetter E.C.
        • Scarlett J.M.
        Isolation of obligate anaerobic bacteria from ulcerative keratitis in domestic animals.
        Vet Ophthalmol. 2008; 11: 114-122
      1. Abstracts: The 52nd Annual Scientific Meeting of the American College of Veterinary Ophthalmologists, Indianapolis, IN Sept 29-Oct 2, 2020. Vet Ophthalmol, 2021.

        • Buttner J.N.
        • Schneider M.
        • Jaqueline C.
        • et al.
        Microbiota of the conjunctival sac of 120 healthy cats.
        Vet Ophthalmol. 2019; 22: 328-336
        • Auten C.R.
        • Urbanz J.L.
        • Dees D.D.
        Comparison of bacterial culture results collected via direct corneal ulcer vs conjunctival fornix sampling in canine eyes with presumed bacterial ulcerative keratitis.
        Vet Ophthalmol. 2020; 23: 135-140
        • Scott E.M.
        • Lewin A.C.
        • Leis M.L.
        Current ocular microbiome investigations limit reproducibility and reliability: Critical review and opportunities.
        Vet Ophthalmol. 2021; 24: 4-11
        • Lucas R.
        • Groeneveld J.
        • Harms H.
        • et al.
        A critical evaluation of ecological indices for the comparative analysis of microbial communities based on molecular datasets.
        FEMS Microbiol Ecol. 2017; 93
        • Kuroda M.
        • Sekizuka T.
        • Shinya F.
        • et al.
        Detection of a possible bioterrorism agent, Francisella sp., in a clinical specimen by use of next-generation direct DNA sequencing.
        J Clin Microbiol. 2012; 50: 1810-1812
        • Ozkan J.
        • Wilcox M.
        • Wemheuer B.
        • et al.
        Biogeography of the human ocular microbiota.
        Ocul Surf. 2019; 17: 111-118
        • Gaskin J.M.
        Microbiology of the canine and feline eye.
        Vet Clin North Am Small Anim Pract. 1980; 10: 303-316
        • Gerding Jr., P.A.
        • Kakoma I.
        Microbiology of the canine and feline eye.
        Vet Clin North Am Small Anim Pract. 1990; 20: 615-625
        • Whitley R.D.
        Canine and feline primary ocular bacterial infections.
        Vet Clin North Am Small Anim Pract. 2000; 30: 1151-1167
        • Prado M.R.
        • Rocha M.F.G.
        • Brito E.H.S.
        • et al.
        Survey of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Fortaleza, Ceara, Brazil.
        Vet Ophthalmol. 2005; 8: 33-37
        • McDonald P.J.
        • Watson D.J.
        Microbial flora of normal canine conjunctivae.
        J Small Anim Pract. 1976; 17: 809-812
        • Wang L.
        • Pan Q.
        • Zhang L.
        • et al.
        Investigation of bacterial microorganisms in the conjunctival sac of clinically normal dogs and dogs with ulcerative keratitis in Beijing, China.
        Vet Ophthalmol. 2008; 11: 145-149
        • Leis M.L.
        • Costa M.O.
        Initial description of the core ocular surface microbiome in dogs: Bacterial community diversity and composition in a defined canine population.
        Vet Ophthalmol. 2019; 22: 337-344
        • Rogers C.M.
        • Scott E.M.
        • Sarawichitr B.
        • et al.
        Evaluation of the bacterial ocular surface microbiome in ophthalmologically normal dogs prior to and following treatment with topical neomycin-polymyxin-bacitracin.
        PLoS One. 2020; 15: e0234313
        • Banks K.C.
        • Giuliano E.A.
        • Busi S.B.
        • et al.
        Evaluation of Healthy Canine Conjunctival, Periocular Haired Skin, and Nasal Microbiota Compared to Conjunctival Culture.
        Front Vet Sci. 2020; 7: 558
        • Shewen P.E.
        • Povey R.C.
        • Wilson M.R.
        A survey of the conjunctival flora of clinically normal cats and cats with conjunctivitis.
        Can Vet J. 1980; 21: 231-233
        • Espinola M.B.
        • Lilenbaum W.
        Prevalence of bacteria in the conjunctival sac and on the eyelid margin of clinically normal cats.
        J Small Anim Pract. 1996; 37: 364-366
        • Kielbowicz Z.
        • Ploneczka-Janeczko J.B.
        • Bania J.
        • et al.
        Characteristics of the bacterial flora in the conjunctival sac of cats from Poland.
        J Small Anim Pract. 2015; 56: 203-206
        • Aftab G.
        • Rajaei S.M.
        • Pot S.A.
        • et al.
        Seasonal Effects on the Corneoconjunctival Microflora in a Population of Persian Cats in Iran.
        Top Companion Anim Med. 2019; 34: 30-32
        • Arteaga K.
        • Aftab G.
        • Rajaei S.M.
        • et al.
        Comparison of conjunctival microbiota of clinically normal Persian cats with and without nasolacrimal duct obstruction.
        Vet Ophthalmol. 2021; 24: 455-459
        • Lucyshyn D.R.
        • Maggs D.J.
        • Cooper A.E.
        • et al.
        Feline conjunctival microbiota in a shelter: effects of time, upper respiratory disease and famciclovir administration.
        J Feline Med Surg. 2021; 23: 316-330
        • Weese S.J.
        • Nichols J.
        • Jalali M.
        • et al.
        The oral and conjunctival microbiotas in cats with and without feline immunodeficiency virus infection.
        Vet Res. 2015; 46: 21
        • Darden J.E.
        • Scott E.M.
        • Arnold C.
        • et al.
        Evaluation of the bacterial ocular surface microbiome in clinically normal cats before and after treatment with topical erythromycin.
        PLoS One. 2019; 14: e0223859
        • Willis K.A.
        • Postnikoff C.K.
        • Freeman A.
        • et al.
        The closed eye harbours a unique microbiome in dry eye disease.
        Sci Rep. 2020; 10: 12035
        • Andersson J.
        • Vogt J.K.
        • Dalgaard M.D.
        • et al.
        Ocular surface microbiota in patients with aqueous tear-deficient dry eye.
        Ocul Surf. 2021; 19: 210-217
        • Salisbury M.A.R.
        • Kaswan R.L.
        • Brown J.
        Microorganisms isolated from the corneal surface before and during topical cyclosporine treatment in dogs with keratoconjunctivitis sicca.
        Am J Vet Res. 1995; 56: 880-884
        • Braus B.K.
        • Riedler D.
        • Tichy A.
        • et al.
        The effects of two different types of bandage contact lenses on the healthy canine eye.
        Vet Ophthalmol. 2018; 21: 477-486
        • Kita M.
        • Kanai K.
        • Ono H.K.
        • et al.
        Retention, Bacterial Adhesion, and Biofilm Formation between Anionic and Zwitterionic Bandage Contact Lenses in Healthy Dogs: A Pilot Study.
        Vet Sci. 2021; 8
        • Retuerto M.A.
        • Szczotka-Flynn L.
        • Mukherjee P.K.
        • et al.
        Diversity of Ocular Surface Bacterial Microbiome Adherent to Worn Contact Lenses and Bacterial Communities Associated With Care Solution Use.
        Eye Contact Lens. 2019; 45: 331-339
        • Hindley K.E.
        • Groth A.D.
        • King M.
        • et al.
        Bacterial isolates, antimicrobial susceptibility, and clinical characteristics of bacterial keratitis in dogs presenting to referral practice in Australia.
        Vet Ophthalmol. 2016; 19: 418-426
        • Tolar E.L.
        • Hendrix D.V.H.
        • Rohrbach B.W.
        • et al.
        Evaluation of clinical characteristics and bacterial isolates in dogs with bacterial keratitis: 97 cases (1993-2003).
        J Am Vet Med Assoc. 2006; 228: 80-85
        • Suter A.
        • Voelter K.
        • Hartnack S.
        • et al.
        Septic keratitis in dogs, cats, and horses in Switzerland: associated bacteria and antibiotic susceptibility.
        Vet Ophthalmol. 2018; 21: 66-75
        • Gerding Jr., P.A.
        • McLaughlin S.A.
        • Troop M.W.
        Pathogenic bacteria and fungi associated with external ocular diseases in dogs: 131 cases (1981-1986).
        J Am Vet Med Assoc. 1988; 193: 242-244
        • Murphy J.M.
        • Lavach J.D.
        • Severin G.A.
        Survey of conjunctival flora in dogs with clinical signs of external eye disease.
        J Am Vet Med Assoc. 1978; 172: 66-68
        • Ollivier F.J.
        Bacterial corneal diseases in dogs and cats.
        Clin Tech Small Anim Pract. 2003; 18: 193-198
        • Lin C.T.
        • Petersen-Jones S.M.
        Antibiotic susceptibility of bacterial isolates from corneal ulcers of dogs in Taiwan.
        in: Journal of small animal practice. 2007: 271-274
        • Levitt S.
        • Osinchuk S.C.
        • Bauer B.
        • et al.
        Bacterial isolates of indolent ulcers in 43 dogs.
        Vet Ophthalmol. 2020; 23: 1009-1013
        • Kang Y.
        • Zhang H.
        • Hu M.
        • et al.
        Alterations in the Ocular Surface Microbiome in Traumatic Corneal Ulcer Patients.
        Invest Ophthalmol Vis Sci. 2020; 61: 35
        • Cavuoto K.M.
        • Galor A.
        • Banerjee S.
        Ocular Surface Microbiome Alterations Are Found in Both Eyes of Individuals With Unilateral Infectious Keratitis.
        Transl Vis Sci Technol. 2021; 10: 19
        • Hartmann A.D.
        • Hawley J.
        • Werckenthin C.
        • et al.
        Detection of bacterial and viral organisms from the conjunctiva of cats with conjunctivitis and upper respiratory tract disease.
        J Feline Med Surg. 2010; 12: 775-782
        • Lin C.T.
        • Petersen-Jones S.M.
        Antibiotic susceptibility of bacteria isolated from cats with ulcerative keratitis in Taiwan.
        J Small Anim Pract. 2008; 49: 80-83
        • McCubbin K.D.
        • Anholt R.M.
        • de Jong E.
        • et al.
        Knowledge Gaps in the Understanding of Antimicrobial Resistance in Canada.
        Front Public Health. 2021; 9: 726484
        • Watkins R.R.
        • Bonomo R.A.
        Overview: The Ongoing Threat of Antimicrobial Resistance.
        Infect Dis Clin North Am. 2020; 34: 649-658
        • Naylor N.R.
        • Atun R.
        • Zhu N.
        • et al.
        Estimating the burden of antimicrobial resistance: a systematic literature review.
        Antimicrob Resist Infect Control. 2018; 7: 58
        • Lloyd D.H.
        • Page S.W.
        Antimicrobial Stewardship in Veterinary Medicine.
        Microbiol Spectr. 2018; 6
        • Weese J.S.
        • van Duijkeren E.
        Methicillin-resistant Staphylococcus aureus and Staphylococcus pseudintermedius in veterinary medicine.
        Vet Microbiol. 2010; 140: 418-429
        • Varges R.
        • Penna B.
        • Martins G.
        • et al.
        Antimicrobial susceptibility of Staphylococci isolated from naturally occurring canine external ocular diseases.
        Vet Ophthalmol. 2009; 12: 216-220
        • Sandmeyer L.S.
        • Bauer B.S.
        • Poor S.M.M.
        • et al.
        Alterations in conjunctival bacteria and antimicrobial susceptibility during topical administration of ofloxacin after cataract surgery in dogs.
        Am J Vet Res. 2017; 78: 207-214
        • Mouney M.C.
        • Stiles J.
        • Townsend W.M.
        • et al.
        Prevalence of methicillin-resistant Staphylococcus spp. in the conjunctival sac of healthy dogs.
        Vet Ophthalmol. 2015; 18: 123-126
        • Gentile D.
        • Allbaugh R.A.
        • Adiguzel M.C.
        • et al.
        Bacterial Cross-Contamination in a Veterinary Ophthalmology Setting.
        Front Vet Sci. 2020; 7: 571503
        • Casola C.
        • Winter-Kempf E.
        • Voelter K.
        Bacterial contamination of slit lamps in veterinary ophthalmology.
        Vet Ophthalmol. 2019; 22: 828-833
        • Soimala T.
        • Lubke-Becker A.
        • Hanke D.
        • et al.
        Molecular and phenotypic characterization of methicillin-resistant Staphylococcus pseudintermedius from ocular surfaces of dogs and cats suffering from ophthalmological diseases.
        Vet Microbiol. 2020; 244: 108687
        • Leigue L.
        • Montiani-Ferreira F.
        • Moore B.A.
        Antimicrobial susceptibility and minimal inhibitory concentration of Pseudomonas aeruginosa isolated from septic ocular surface disease in different animal species.
        Open Vet J. 2016; 6: 215-222