Advertisement
Review Article| Volume 53, ISSUE 2, P319-338, March 2023

Optical Coherence Tomography

A Review of Current Applications in Veterinary Ophthalmology

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Veterinary Clinics: Small Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fujimoto J.G.
        Optical coherence tomography for ultrahigh resolution in vivo imaging.
        Nat Biotechnol. 2003; 21: 1361-1367
        • Toth C.A.
        • Birngruber R.
        • Boppart S.A.
        • et al.
        Argon laser retinal lesions evaluated in vivo by optical coherence tomography.
        Am J Ophthalmol. 1997; 123: 188-198
        • Aumann S.
        • Donner S.
        • Fischer J.
        • et al.
        Optical Coherence Tomography (OCT): principle and technical realization.
        in: Bille J.F. High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. Springer Copyright 2019. The Author(s), 2019: 59-85
        • Kiernan D.F.
        • Mieler W.F.
        • Hariprasad S.M.
        Spectral-domain optical coherence tomography: a comparison of modern high-resolution retinal imaging systems.
        Am J Ophthalmol. 2010; 149: 18-31
        • Wojtkowski M.
        • Leitgeb R.
        • Kowalczyk A.
        • et al.
        In vivo human retinal imaging by Fourier domain optical coherence tomography.
        J Biomed Opt. 2002; 7: 457-463
        • McLellan G.J.
        • Rasmussen C.A.
        Optical coherence tomography for the evaluation of retinal and optic nerve morphology in animal subjects: practical considerations.
        Vet Ophthalmol. 2012; 15: 13-28
        • Chen T.C.
        • Cense B.
        • Pierce M.C.
        • et al.
        Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging.
        Arch Ophthalmol. 2005; 123: 1715-1720
        • de Boer J.F.
        • Cense B.
        • Park B.H.
        • et al.
        Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography.
        Opt Lett. 2003; 28: 2067-2069
        • Zhou S.Y.
        • Wang C.X.
        • Cai X.Y.
        • et al.
        Optical coherence tomography and ultrasound biomicroscopy imaging of opaque corneas.
        Cornea. 2013; 32: e25-e30
        • Ramos J.L.
        • Li Y.
        • Huang D.
        Clinical and research applications of anterior segment optical coherence tomography - a review.
        Clin Exp Ophthalmol. 2009; 37: 81-89
        • Patel C.K.
        • Chen S.D.M.
        • Farmery A.D.
        Optical coherence tomography under general anesthesia in a child with nystagmus.
        Am J Ophthalmol. 2004; 137: 1127-1129
        • Pinto N.I.
        • Gilger B.C.
        Spectral-domain optical coherence tomography evaluation of the cornea, retina, and optic nerve in normal horses.
        Vet Ophthalmol. 2014; 17: 140-148
        • Strouthidis N.G.
        • Grimm J.
        • Williams G.A.
        • et al.
        A comparison of optic nerve head morphology viewed by spectral domain optical coherence tomography and by serial histology.
        Invest Ophthalmol Vis Sci. 2010; 51: 1464-1474
        • Schuman J.S.
        • Pedut-Kloizman T.
        • Pakter H.
        • et al.
        Optical coherence tomography and histologic measurements of nerve fiber layer thickness in normal and glaucomatous monkey eyes.
        Invest Ophthalmol Vis Sci. 2007; 48: 3645-3654
        • Wada T.
        • Song Y.
        • Oomae T.
        • et al.
        Longitudinal Changes in Retinal Blood Flow in a Feline Retinal Vein Occlusion Model as Measured by Doppler Optical Coherence Tomography and Optical Coherence Tomography Angiography.
        Invest Ophthalmol Vis Sci. 2020; 61: 34
        • Gray A.T.
        • Krejci S.T.
        • Larson M.D.
        Neuromuscular blocking drugs do not alter the pupillary light reflex of anesthetized humans.
        Arch Neurol. 1997; 54: 579-584
        • Payen J.F.
        • Isnardon S.
        • Lavolaine J.
        • et al.
        [Pupillometry in anesthesia and critical care].
        Ann Fr Anesth Reanim. 2012; 31 (La pupillométrie en anesthésie-réanimation): e155-e159
        • Jugant S.
        • Grillot A.E.
        • Lyarzhri F.
        • et al.
        Changes in pupil size and intraocular pressure after topical application of 0.5% tropicamide to the eyes of dogs sedated with butorphanol.
        Am J Vet Res. 2019; 80: 95-101
        • Wallin-Håkanson N.
        • Wallin-Håkanson B.
        The effects of topical tropicamide and systemic medetomidine, followed by atipamezole reversal, on pupil size and intraocular pressure in normal dogs.
        Vet Ophthalmol. 2001; 4: 3-6
        • Rubin L.F.
        • Wolfes R.L.
        Mydriatics for canine ophthalmoscopy.
        J Am Vet Med Assoc. 1962; 140: 137-141
        • Bessonnat A.
        • Vanore M.
        Effect of topical cyclopentolate alone or combined with phenylephrine in healthy horses.
        Vet Ophthalmol. 2021; https://doi.org/10.1111/vop.12896
        • Costa D.
        • Leiva M.
        • Coyo N.
        • et al.
        Effect of topical 1% cyclopentolate hydrochloride on tear production, pupil size, and intraocular pressure in healthy Beagles.
        Vet Ophthalmol. 2016; 19: 449-453
        • Kovalcuka L.
        • Nikolajenko M.
        Changes in intraocular pressure, horizontal pupil diameter, and tear production during the use of topical 1% cyclopentolate in cats and rabbits.
        Open Vet J. 2020; 10: 59-67
        • Hussein K.H.
        • Elmeligy E.
        • Khalphallah A.
        • et al.
        Effect of Topical Cyclopentolate 1% on Ocular Ultrasonographic Features, Intraocular Pressure, Tear Production, and Pupil Size in Normal Donkeys (Equus Asinus).
        J Equine Vet Sci. 2021; 104: 103700
        • Kim Y.L.
        • Walsh Jr., J.T.
        • Goldstick T.K.
        • et al.
        Variation of corneal refractive index with hydration.
        Phys Med Biol. 2004; 49: 859-868
        • Hosseini K.
        • Kholodnykh A.I.
        • Petrova I.Y.
        • et al.
        Monitoring of rabbit cornea response to dehydration stress by optical coherence tomography.
        Invest Ophthalmol Vis Sci. 2004; 45: 2555-2562
        • Cho N.H.
        • Park K.
        • Wijesinghe R.E.
        • et al.
        Development of real-time dual-display handheld and bench-top hybrid-mode SD-OCTs.
        Sensors (Basel). 2014; 14: 2171-2181
        • Spaide R.F.
        • Fujimoto J.G.
        • Waheed N.K.
        • et al.
        Optical coherence tomography angiography.
        Prog Retin Eye Res. 2018; 64: 1-55
        • Sung K.R.
        • Wollstein G.
        • Bilonick R.A.
        • et al.
        Effects of age on optical coherence tomography measurements of healthy retinal nerve fiber layer, macula, and optic nerve head.
        Ophthalmology. 2009; 116: 1119-1124
        • Brandao L.M.
        • Ledolter A.A.
        • Schötzau A.
        • et al.
        Comparison of Two Different OCT Systems: Retina Layer Segmentation and Impact on Structure-Function Analysis in Glaucoma.
        J Ophthalmol. 2016; 2016: 8307639
        • Espinheira Gomes F.
        • Abou-Madi N.
        • Ledbetter E.C.
        • et al.
        Spectral-domain optical coherence tomography imaging of normal foveae: A pilot study in 17 diurnal birds of prey.
        Vet Ophthalmol. 2020; 23: 347-357
        • Occelli L.M.
        • Pasmanter N.
        • Ayoub E.E.
        • et al.
        Changes in retinal layer thickness with maturation in the dog: an in vivo spectral domain - optical coherence tomography imaging study.
        BMC Vet Res. 2020; 16: 225
        • Hernandez-Merino E.
        • Kecova H.
        • Jacobson S.J.
        • et al.
        Spectral domain optical coherence tomography (SD-OCT) assessment of the healthy female canine retina and optic nerve.
        Vet Ophthalmol. 2011; 14: 400-405
        • Carpenter C.L.
        • Kim A.Y.
        • Kashani A.H.
        Normative Retinal Thicknesses in Common Animal Models of Eye Disease Using Spectral Domain Optical Coherence Tomography.
        Adv Exp Med Biol. 2018; 1074: 157-166
        • Espinheira Gomes F.
        • Parry S.
        • Ledbetter E.
        Spectral domain optical coherence tomography evaluation of the feline optic nerve and peripapillary retina.
        Vet Ophthalmol. 2019; 22: 623-632
        • Grahn B.H.
        • Sandmeyer L.L.
        • Breaux C.
        Retinopathy of Coton de Tulear dogs: clinical manifestations, electroretinographic, ultrasonographic, fluorescein and indocyanine green angiographic, and optical coherence tomographic findings.
        Vet Ophthalmol. 2008; 11: 242-249
        • Osinchuk S.C.
        • Leis M.L.
        • Salpeter E.M.
        • et al.
        Evaluation of retinal morphology of canine sudden acquired retinal degeneration syndrome using optical coherence tomography and fluorescein angiography.
        Vet Ophthalmol. 2019; 22: 398-406
        • Rauscher F.G.
        • Azmanis P.
        • Körber N.
        • et al.
        Optical coherence tomography as a diagnostic tool for retinal pathologies in avian ophthalmology.
        Invest Ophthalmol Vis Sci. 2013; 54: 8259-8269
        • Somma A.T.
        • Moreno J.C.D.
        • Sato M.T.
        • et al.
        Characterization of a novel form of progressive retinal atrophy in Whippet dogs: a clinical, electroretinographic, and breeding study.
        Vet Ophthalmol. 2017; 20: 450-459
        • Grozdanic S.D.
        • Lazic T.
        • Kecova H.
        • et al.
        Optical coherence tomography and molecular analysis of sudden acquired retinal degeneration syndrome (SARDS) eyes suggests the immune-mediated nature of retinal damage.
        Vet Ophthalmol. 2019; 22: 305-327
        • Distante P.
        • Lombardo S.
        • Verticchio Vercellin A.C.
        • et al.
        Structure/Function relationship and retinal ganglion cells counts to discriminate glaucomatous damages.
        BMC Ophthalmol. 2015; 15: 185
        • Mead B.
        • Tomarev S.
        Evaluating retinal ganglion cell loss and dysfunction.
        Exp Eye Res. 2016; 151: 96-106
        • Telle M.R.
        • Snyder K.C.
        • Oikawa K.
        • et al.
        Development and validation of methods to visualize conventional aqueous outflow pathways in canine primary angle closure glaucoma.
        Vet Ophthalmol. 2021; https://doi.org/10.1111/vop.12943
        • Kim T.I.
        • Hong J.P.
        • Ha B.J.
        • et al.
        Determination of treatment strategies for granular corneal dystrophy type 2 using Fourier-domain optical coherence tomography.
        Br J Ophthalmol. 2010; 94: 341-345
        • Jung S.H.
        • Han K.E.
        • Stulting R.D.
        • et al.
        Phototherapeutic keratectomy in diffuse stromal haze in granular corneal dystrophy type 2.
        Cornea. 2013; 32: 296-300
        • Konstantopoulos A.
        • Kuo J.
        • Anderson D.
        • et al.
        Assessment of the use of anterior segment optical coherence tomography in microbial keratitis.
        Am J Ophthalmol. 2008; 146: 534-542
        • Shousha M.A.
        • Perez V.L.
        • Wang J.
        • et al.
        Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet's membrane in Fuchs' dystrophy.
        Ophthalmology. 2010; 117: 1220-1227
        • Thomasy S.M.
        • Cortes D.E.
        • Hoehn A.L.
        • et al.
        In Vivo Imaging of Corneal Endothelial Dystrophy in Boston Terriers: A Spontaneous, Canine Model for Fuchs' Endothelial Corneal Dystrophy.
        Invest Ophthalmol Vis Sci. 2016; 57: 495-503
        • Lee S.Y.
        • Joe S.G.
        • Kim J.-G.
        • et al.
        Optical Coherence Tomography Evaluation of Detached Macula from Rhegmatogenous Retinal Detachment and Central Serous Chorioretinopathy.
        Am J Ophthalmol. 2008; 145: 1071-1076.e2
        • Fujimoto H.
        • Gomi F.
        • Wakabayashi T.
        • et al.
        Morphologic Changes in Acute Central Serous Chorioretinopathy Evaluated by Fourier-Domain Optical Coherence Tomography.
        Ophthalmology. 2008; 115: 1494-1500.e2