Review Article| Volume 53, ISSUE 1, P141-154, January 2023

Tick-Borne Diseases


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Veterinary Clinics: Small Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Centers for Disease Control and Prevention
        Lyme Disease.
        (Available at:) (Accessed May 28, 2022)
        • Adrion E.R.
        • Aucott J.
        • Lemke K.W.
        • et al.
        Health care costs, utilization and patterns of care following Lyme disease.
        PLoS One. 2015; 10: e0116767
        • Adeolu M.
        • Gupta R.S.
        A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex).
        Antonie Van Leeuwenhoek. 2014; 105: 1049-1072
        • Ginsberg H.S.
        • Hickling G.J.
        • Burke R.L.
        • et al.
        Why Lyme disease is common in the northern US, but rare in the south: The roles of host choice, host-seeking behavior, and tick density.
        PLoS Biol. 2021; 19: e3001066
        • Lantos P.M.
        • Nigrovic L.E.
        • Auwaerter P.G.
        • et al.
        Geographic expansion of Lyme disease in the southeastern United States, 2000-2014.
        Open Forum Infect Dis. 2015; 2: ofv143
        • Nelder M.P.
        • Russell C.B.
        • Dibernardo A.
        • et al.
        Monitoring the patterns of submission and presence of tick-borne pathogens in Ixodes scapularis collected from humans and companion animals in Ontario, Canada (2011-2017).
        Parasit Vectors. 2021; 14: 260
        • Salkeld D.J.
        • Lagana D.M.
        • Wachara J.
        • et al.
        Examining prevalence and diversity of tick-borne pathogens in questing Ixodes pacificus ticks in California.
        Appl Environ Microbiol. 2021; 87: e0031921
        • Kurokawa C.
        • Lynn G.E.
        • Pedra J.H.F.
        • et al.
        Interactions between Borrelia burgdorferi and ticks.
        Nat Rev Microbiol. 2020; 18: 587-600
        • Centers for Disease Control and Prevention
        Lyme Disease Transmission.
        (Available at:) (accessed May 28, 2022)
        • Fourie J.J.
        • Stanneck D.
        • Luus H.G.
        • et al.
        Transmission of Ehrlichia canis by Rhipicephalus sanguineus ticks feeding on dogs and on artificial membranes.
        Vet Parasitol. 2013; 197: 595-603
        • Fourie J.J.
        • Evans A.
        • Labuschagne M.
        • et al.
        Transmission of Anaplasma phagocytophilum (Foggie, 1949) by Ixodes ricinus (Linnaeus, 1758) ticks feeding on dogs and artificial membranes.
        Parasit Vectors. 2019; 12: 136
        • Levin M.L.
        • Troughton D.R.
        • Loftis A.D.
        Duration of tick attachment necessary for transmission of Anaplasma phagocytophilum by Ixodes scapularis (Acari: Ixodidae) nymphs.
        Ticks Tick Borne Dis. 2021; 12: 101819
        • Hovius J.W.
        • Schuijt T.J.
        • de Groot K.A.
        • et al.
        Preferential protection of Borrelia burgdorferi sensu stricto by a Salp15 homologue in Ixodes ricinus saliva.
        J Infect Dis. 2008; 198: 1189-1197
        • Wormser G.P.
        Lyme disease.
        in: Goldman-cecil medicine. 26 ed. Elsevier, 2020: 1991-1996
        • Centers for Disease Control and Prevention
        Lyme disease.
        (Available at:) (Accessed May 28, 2022)
        • Littman M.P.
        • Gerber B.
        • Goldstein R.E.
        • et al.
        ACVIM consensus update on Lyme borreliosis in dogs and cats.
        J Vet Intern Med. 2018; 32: 887-903
        • Borys M.A.
        • Kass P.H.
        • Mohr F.C.
        • et al.
        Differences in clinicopathologic variables between Borrelia C6 antigen seroreactive and Borrelia C6 seronegative glomerulopathy in dogs.
        J Vet Intern Med. 2019; 33: 2096-2104
        • Alby K.
        • Capraro G.A.
        Alternatives to serologic testing for diagnosis of Lyme disease.
        Clin Lab Med. 2015; 35: 815-825
        • Moroff S.
        • Woodruff C.
        • Woodring T.
        • et al.
        Multiple antigen target approach using the Accuplex4 BioCD system to detect Borrelia burgdorferi antibodies in experimentally infected and vaccinated dogs.
        J Vet Diagn Invest. 2015; 27: 581-588
        • Wagner B.
        • Freer H.
        • Rollins A.
        • et al.
        A fluorescent bead-based multiplex assay for the simultaneous detection of antibodies to B. burgdorferi outer surface proteins in canine serum.
        Vet Immunol Immunopathol. 2011; 140: 190-198
        • Straubinger R.K.
        • Straubinger A.F.
        • Summers B.A.
        • et al.
        Clinical manifestations, pathogenesis, and effect of antibiotic treatment on Lyme borreliosis in dogs.
        Wien Klin Wochenschr. 1998; 110: 874-881
        • Grosenbaugh D.A.
        • De Luca K.
        • Durand P.Y.
        • et al.
        Characterization of recombinant OspA in two different Borrelia vaccines with respect to immunological response and its relationship to functional parameters.
        BMC Vet Res. 2018; 14: 312
        • Camire A.C.
        • Hatke A.L.
        • King V.L.
        • et al.
        Comparative analysis of antibody responses to outer surface protein (Osp)A and OspC in dogs vaccinated with Lyme disease vaccines.
        Vet J. 2021; 273: 105676
        • Rhodes D.V.
        • Earnhart C.G.
        • Mather T.N.
        • et al.
        Identification of Borrelia burgdorferi OspC genotypes in canine tissue following tick infestation: implications for Lyme disease vaccine and diagnostic assay design.
        Vet J. 2013; 198: 412-418
        • Mechai S.
        • Margos G.
        • Feil E.J.
        • et al.
        Evidence for host-genotype associations of Borrelia burgdorferi sensu stricto.
        PLoS One. 2016; 11: e0149345
        • Nadelman R.B.
        • Hanincova K.
        • Mukherjee P.
        • et al.
        Differentiation of reinfection from relapse in recurrent Lyme disease.
        N Engl J Med. 2012; 367: 1883-1890
        • IRIS Canine GN Study Group Established Pathology Subgroup
        • Segev G.
        • Cowgill L.D.
        • et al.
        Consensus recommendations for immunosuppressive treatment of dogs with glomerular disease based on established pathology.
        J Vet Intern Med. 2013; 27: S44-S54
        • Lester S.J.
        • Breitschwerdt E.B.
        • Collis C.D.
        • et al.
        Anaplasma phagocytophilum infection (granulocytic anaplasmosis) in a dog from Vancouver Island.
        Can Vet J. 2005; 46: 825-827
        • Xu G.
        • Pearson P.
        • Dykstra E.
        • et al.
        Human-biting Ixodes ticks and pathogen prevalence from California, Oregon, and Washington.
        Vector Borne Zoonotic Dis. 2019; 19: 106-114
        • Carrade D.D.
        • Foley J.E.
        • Borjesson D.L.
        • et al.
        Canine granulocytic anaplasmosis: a review.
        J Vet Intern Med. 2009; 23: 1129-1141
        • Bouzouraa T.
        • Rene-Martellet M.
        • Chene J.
        • et al.
        Clinical and laboratory features of canine Anaplasma platys infection in 32 naturally infected dogs in the Mediterranean basin.
        Ticks Tick Borne Dis. 2016; 7: 1256-1264
        • Mylonakis M.E.
        • Harrus S.
        • Breitschwerdt E.B.
        An update on the treatment of canine monocytic ehrlichiosis (Ehrlichia canis).
        Vet J. 2019; 246: 45-53
        • de Castro M.B.
        • Machado R.Z.
        • de Aquino L.P.
        • et al.
        Experimental acute canine monocytic ehrlichiosis: clinicopathological and immunopathological findings.
        Vet Parasitol. 2004; 119: 73-86
        • Mylonakis M.E.
        • Koutinas A.F.
        • Breitschwerdt E.B.
        • et al.
        Chronic canine ehrlichiosis (Ehrlichia canis): a retrospective study of 19 natural cases.
        J Am Anim Hosp Assoc. 2004; 40: 174-184
        • Starkey L.A.
        • Barrett A.W.
        • Beall M.J.
        • et al.
        Persistent Ehrlichia ewingii infection in dogs after natural tick infestation.
        J Vet Intern Med. 2015; 29: 552-555
        • Neer T.M.
        • Breitschwerdt E.B.
        • Greene R.T.
        • et al.
        Consensus statement on ehrlichial disease of small animals from the infectious disease study group of the ACVIM.
        J Vet Intern Med. 2002; 16: 309-315
        • Birkenheuer A.J.
        in: Sykes J.E. Infectious diseases of the dog and cat. 5 edition. Elsevier Saunders, Philadelphia, PA2022: 1203-1217 (In Press)
        • Sikorski L.E.
        • Birkenheuer A.J.
        • Holowaychuk M.K.
        • et al.
        Babesiosis caused by a large Babesia species in 7 immunocompromised dogs.
        J Vet Intern Med. 2010; 24: 127-131
        • Delisle J.
        • Mendell N.L.
        • Stull-Lane A.
        • et al.
        Human infections by multiple spotted fever group rickettsiae in Tennessee.
        Am J Trop Med Hyg. 2016; 94: 1212-1217
        • Biggs H.M.
        • Behravesh C.B.
        • Bradley K.K.
        • et al.
        Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain Spotted Fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis - United States.
        MMWR Recomm Rep. 2016; 65: 1-44
        • Petersen J.M.
        • Molins C.R.
        Subpopulations of Francisella tularensis ssp. tularensis and holarctica: identification and associated epidemiology.
        Future Microbiol. 2010; 5: 649-661
        • Sherrill M.K.
        • Cohn L.A.
        Cytauxzoonosis: Diagnosis and treatment of an emerging disease.
        J Feline Med Surg. 2015; 17: 940-948
        • Allen K.E.
        • Li Y.
        • Kaltenboeck B.
        • et al.
        Diversity of Hepatozoon species in naturally infected dogs in the southern United States.
        Vet Parasitol. 2008; 154: 220-225
        • Parkins N.D.
        • Stokes J.V.
        • Gavron N.A.
        • et al.
        Scarcity of Hepatozoon americanum in Gulf Coast tick vectors and potential for cultivating the protozoan.
        Vet Parasitol Reg Stud Rep. 2020; 21: 100421
        • Allen K.E.
        • Johnson E.M.
        • Little S.E.
        Hepatozoon spp infections in the United States.
        Vet Clin North Am Small Anim Pract. 2011; 41: 1221-1238
        • Coy C.L.
        • Evans J.B.
        • Lee A.M.
        • et al.
        American Canine Hepatozoonosis causes multifocal periosteal proliferation on ct: a case report of 4 dogs.
        Front Vet Sci. 2022; 9: 872778