Review Article| Volume 52, ISSUE 1, P221-234, January 2022

Download started.


Virtual Surgical Planning and 3D Printing in Veterinary Dentistry and Oromaxillofacial Surgery


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.


      Subscribe to Veterinary Clinics: Small Animal Practice
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Doi K.
        Computer-aided diagnosis in medical imaging: historical review, current status and future potential.
        Comput Med Imaging Graph. 2007; 31: 198-211
        • Efanov J.I.
        • Roy A.A.
        • Huang K.N.
        • et al.
        Virtual surgical planning: the pearls and pitfalls.
        Plast Reconstr Surg Glob Open. 2018; 6: e1443
        • Kodama H.
        Automatic method of fabricating a three-dimensional plastic model with photo-hardening polymer.
        Rev Sci Instrum. 1981; 52: 1770-1773
        • Su A.
        • Al’Aref S.J.
        History of 3D Printing. 3D Printing Applications in Cardiovascular Medicine.
        (Available at:) (Accessed July 22, 2021)
        • McGurk M.
        • Amis A.
        • Potamianos P.
        • et al.
        Rapid prototyping techniques for anatomical modelling in medicine.
        Ann R Coll Surg Eng. 1997; 79: 169-174
      1. The Official History of the RepRap Project. All about 3D printing 2016.
        (Available at:) (Accessed July 22, 2021)
        • Robiony M.
        • Salvo
        • Costa F.
        • et al.
        Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work.
        J Oral Maxillofac Surg. 2007; 65: 1198-1208
        • Mazzoli A.
        Selective laser sintering in biomedical engineering.
        Med Biol Eng Comput. 2013; 51: 245-256
        • Leuker B.
        • Gulkan H.
        • Irsen S.
        • et al.
        Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing.
        J Mater Sci Mater Med. 2005; 16: 1121-1124
        • Serrano C.
        • van den Brink H.
        • Pineay J.
        • et al.
        Benefits of 3D printing applications in jaw reconstruction: A systematic review and meta-analysis.
        J Cran Max Fac Surg. 2019; 47: 1387-1397
        • Hua J.
        • Aziz S.
        • Shum J.W.
        Virtual surgical planning in oral and maxillofacial surgery.
        Oral Maxillofacial Surg Clin N Am. 2019; 31: 519-530
        • Allisy-Roberts P.
        • Williams J.
        Farr’s physics for medical imaging.
        W.B. Saunders Company, New York2007
        • Pauwels R.
        • Beinsberger J.
        • Stamatakis H.
        • et al.
        Comparison of spatial and contrast resolution for cone-beam computed tomography scanners.
        Oral Surg Oral Med Oral Pathol Oral Radiol. 2012; 114: 127-135
        • Lin E.
        • Alessio A.
        What are the basic concepts of temporal, contrast and spatial resolution in cardiac CT?.
        J Cardiovasc Comput Tomogr. 2009; 3: 403-408
        • Kusnoto B.
        • Evans C.A.
        Reliability of a 3D surface laser scanner for orthodontic applications.
        Am J Orthod Dentofacial Orthop. 2002; 122: 342-348
        • Tarsitano A.
        • Ricotta F.
        • Baldino G.
        • et al.
        Navigation-guided resection of maxillary tumours: the accuracy of computer-assisted surgery in terms of control of resection margins – a feasibility study.
        J Craniomaxillofac Surg. 2017; 45: 2109-2114
        • Ricotta F.
        • Cercenelli L.
        • Battaglia S.
        • et al.
        Navigation-guided resection of maxillary tumours: can a new volumetric virtual planning method improve outcomes in terms of control of resection margins?.
        J Craniomaxillofac Surg. 2018; 46: 2240-2247
        • Bernardino M.M.
        • Chiodo M.V.
        • Patel P.A.
        Customized “in-office” three-dimensional printing for virtual surgical planning in craniofacial surgery.
        J Craniofac Surg. 2015; 26: 1584-1586
        • Mazzoni S.
        • Marchetti C.
        • Sgarzani R.
        • et al.
        Prosthetically guided maxillofacial surgery: evaluation of the accuracy of a surgical guide and custom-made bone plate in oncology patients after mandibular reconstruction.
        Plast Reconstr Surg. 2013; 131: 1376-1385
        • Hespel A.M.
        • Wilhite R.
        • Hudson J.
        Invited review – Application for 3D printers in veterinary medicine.
        Vet Radiol Ultrasound. 2014; 55: 347-358
        • Baker T.
        • Earwaker W.
        • Lisle D.
        Accuracy of stereolithographic models of human anatomy.
        Australas Radiol. 1994; 38: 106-111
        • Doney E.
        • Krumdick L.
        • Diener J.
        • et al.
        3D printing of preclinical X-ray computed tomographic data sets.
        J Vis Exp. 2013; 73: e50250
        • Harrysson O.L.
        • Cormier D.R.
        • Marcellin-Little D.J.
        • et al.
        Rapid prototyping for treatment of canine angular limb deformities.
        Rapid Prototyping J. 2003; 9: 37-42
        • Dismukes D.I.
        • Fox D.B.
        • Tomlinson J.L.
        • et al.
        Use of radiographic measures and three-dimensional computed tomographic imaging in surgical correction of an antebrachial deformity in a dog.
        J Am Vet Med Assoc. 2008; 232: 68-73
        • Radke A.
        • Morello S.
        • Muir P.
        • et al.
        Application of computed tomography and stereolithography to correct a complex angular and torsional limb deformity in a donkey.
        Vet Surg. 2017; 46: 1131-1138
        • Winer J.N.
        • Verstraete F.J.M.
        • Cissell D.D.
        • et al.
        The application of 3-dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats.
        Vet Surg. 2017; 46: 942-951
        • Jacobs C.A.
        • Lin A.Y.
        A new classification of three-dimensional printing technologies: systematic review of three-dimensional printing for patient-specific craniomaxillofacial surgery.
        Plast Reconstr Surg. 2017; 19: 1211-1220
        • Ghai S.
        • Sharma Y.
        • Jain N.
        • et al.
        Use of 3-D printing technologies in craniomaxillofacial surgery: a review.
        Oral Maxillofac Surg. 2018; 22: 249-259
        • Tack P.
        • Victor J.
        • Gemmel P.
        • et al.
        3D-printing techniques in a medical setting: a systematic literature review.
        Biomed Eng Online. 2016; 15: 115
        • Liptak J.M.
        • Thatcher G.P.
        • Bray J.P.
        Reconstruction of a mandibular defect with a customize 3-dimensional-printed titanium prosthesis in a cat with a mandibular osteosarcoma.
        J Am Vet Med Assoc. 2017; 250: 900-908
        • Sidambe A.T.
        Biocompatibility of advanced manufactured titanium implants – A review.
        Materials. 2014; 7: 8168-8188
        • Schiff N.
        • Grosgogeat B.
        • Lissac M.
        • et al.
        Influence of fluoride content and pH on the corrosion resistance of titanium and its alloys.
        Biomaterials. 2002; 23: 1995-2002
        • Grün N.G.
        • Holweg P.L.
        • Donohue N.
        • et al.
        Resorbable implants in pediatric fracture treatment.
        Innov Surg Sci. 2018; 3: 119-125