Index

Note: Page numbers of article titles are in boldface type.

A
Acetabular fractures
 MIO for, 1060–1061
Alignment
 in MIPO
 assessment of, 892–893
Antebrachium
 MIPO for
 alignment assessment, 893
 positioning for traction of, 876
Arthrodesis
 hock, 1082–1987
 pancarpal, 1088–1093
 percutaneous plate, 1079–1096. See also Percutaneous plate arthrodesis
Articular fractures
 described, 1051
 MIO for, 1051–1068
 goals of, 1052
 implants for, 1065
 indications for, 1052–1065. See also specific indications, e.g., Shoulder fractures
 postoperative care, 1065–1066
 preoperative assessment, 1052

B
Bone healing
 after external fixation in MIO, 927–929
 in fracture fixation
 under conditions of absolute and relative stability, 861–863
Bone-holding forceps
 in MIPO, 887–888

C
Calcaneal fractures
 MIO for, 1063–1064
Capital physeal fractures
 MIO for, 1061
Carpus fracture
 MIO for, 1059–1060
Central tarsal bone fractures
 MIO for, 1064
Cerclage wires
Cerclage (continued)
in MIO for femoral diaphyseal fractures, 1007
Circular external fixation
in MIPO, 885–887
Coronal plane
varus–valgus malalignment, 1019
Cortical step sign
in axis and torsion assessment in MIO for femoral diaphyseal fractures, 1017

D
Deformation of materials
in fracture fixation, 854–855
Diameter difference sign
in axis and torsion assessment in MIO for femoral diaphyseal fractures, 1017
Direct reduction
for MIO for femoral diaphyseal fractures, 1003
for MIPO for humerus, 979
Distal fibula fractures
MIO for, 1062–1063
Distal metaphyseal fractures
MIO for, 1001–1021. See also Femoral diaphyseal fractures, MIO for
Distal tibia fractures
MIO for, 1062–1063

E
Elastic plate osteosynthesis
for femoral diaphyseal fractures, 1015
Elbow fractures
MIO for, 1055–1059
ESF. See External skeletal fixation (ESF)
External fixation
described, 913–914
External fixators
in MIO, 913–934
articulations and diagonals and, 927
biologic considerations in, 923–925
bone healing due to, 927–929
clinical application of, 927
configurations of, 914–917
clinical variations in frame, 916–917
for femoral diaphyseal fractures, 1006
frame configuration in, 927
indications for, 914
load sharing in, 925–926
mechanical considerations in, 925–927
minimally traumatic surgical approaches, 923–925
pin number in, 926–927
postoperative patient management, 929–931
principles of, 917–923
application technique principles, 919–921
decision-making/frame design principles, 921–923
general principles, 917–918
implant selection principles, 918–919
types of, 914
External skeletal fixation (ESF)
described, 913–914

F
Fatigue failure
in fracture fixation, 858–859
Femoral capital physeal fractures
MIO for, 999–1001
Femoral condylar fractures
MIO for, 1062
Femoral diaphyseal fractures
MIO for, 1001–1021
 axis and torsion assessment, 1015–1018
coronal plane, 1019
implants and fixation, 1007–1015
 bone plates with bridging function, 1011–1013
 bone plates with compression or neutralization function, 1007–1011
 elastic plate osteosynthesis, 1015
 external skeletal fixation, 1013–1014
ILNs, 1013
 screws placed in lag fashion, 1011
indirect reduction, 1003–1007
cerclage wires in, 1007
external fixators in, 1006
fractures distractors in, 1006
implants in, 1007
 push-pull technique, 1006–1007
supports and pads in, 1006
traction in, 1006
limb-length discrepancy, 1020–1021
patient positioning, 1001–1002
prevention of femoral malrotation in, 1019
radiographs of intact opposite limb in, 1018
reduction methods, 1002–1003
sagittal plane, 1019–1020
surgical approach, 1001–1002
Femoral fractures. See also specific types, e.g., Femoral diaphyseal fractures
ILNs for, 955
Femoral head and neck version sign
 in axis and torsion assessment in MIO for femoral diaphyseal fractures, 1017–1018
Femoral head fractures
MIO for, 1061–1062
Femoral malrotation
 prevention of
 in MIO for femoral diaphyseal fractures, 1019
Femoral neck fractures
MIO for, 999–1001, 1061–1062
Femur
 anatomy of, 997–999
 IM pinning of, 883
 positioning for traction of, 878
Femur fractures. See also specific types
 MIO for, 997–1022
 distal metaphyseal fractures, 1001–1021
 femoral capital physeal fractures, 999–1001
 femoral diaphyseal fractures, 1001–1021
 femoral neck fractures, 999–1001
 proximal metaphyseal fractures, 1001–1021
 MIPO for
 alignment assessment, 893
Fibula
 anatomy of, 1024–1027
Fibula fractures
 described, 1023–1024
 MIPO for, 1023–1044
 acute vs. chronic, 1031
 assessment of repair and outcome, 1042–1043
 diaphyseal vs. metaphyseal fractures, 1029–1031
 immature vs. mature patient, 1028–1029
 indications for, 1027
 indirect reduction, 1037–1039
 locking vs. nonlocking plates in, 1031–1037
 patient positioning, 1037
 postoperative care, 1042
 preoperative evaluation, 1027–1037
 procedure, 1039–1042
 simple vs. comminuted fractures, 1027–1028
 surgical approach, 1039
Force of materials
 in fracture fixation, 854–855
Forceps
 bone-holding
 in MIPO, 887–888
Fracture(s). See also specific types
 repair of
 percutaneous pinning for, 963–974. See also Percutaneous pinning, for fracture repair
Fracture distractors
 in MIO
 for femoral diaphyseal fractures, 1006
 in MIPO, 888–890
Fracture fixation
 biomechanical concepts in, 853–872
 applied biomechanics, 859–866
 bone healing under conditions of absolute and relative stability, 861–863
 factors affecting stiffness of plate-bone construct, 863
 plate length, 865
 plate selection, 863–865
position of screws in plate, 865–866
mechanics of materials, 854–859
fatigue failure, 858–859
force, deformation, stress, and strain, 854–855
stiffness, 855–857
described, 853–854
Fracture healing
 biomechanics of, 859–860
Functional reduction
described, 873

G
Greater trochanter position sign
 in axis and torsion assessment in MIO for femoral diaphyseal fractures, 1017

H
Hip rotation test
 in axis and torsion assessment in MIO for femoral diaphyseal fractures, 1015–1016
Hock arthrodesis, 1082–1987
 anatomy related to, 1082–1083
 indications for, 1082
 patient positioning, 1084
 preoperative planning, 1083–1084
 techniques, 1084–1088
 pantarsal arthrodesis using medial plate, 1084–1086
 partial tarsal arthrodesis, 1086–1088
Humerus fractures
 ILNs for, 955
 IM pinning of, 882–883
 MIPO for, 975–982
 alignment assessment, 893
 anatomy related to, 975–976
 biologic assessment, 976–977
 case examples, 980–981
 case selection, 976
 direct reduction, 979
 errors with, 981–982
 implant selection, 978
 indications for, 976
 indirect reduction
 alignment pin placement in, 979
 mechanical factors in, 977–978
 operating room setup, 978
 preoperative planning, 976–978
 surgical approach, 978–979
 positioning for traction of, 876

I
ILNs. See Interlocking nails (ILNs)
IM pinning
 for MIPO, 881–884
Indirect reduction. See also specific indications and fracture types described, 874
for MIO
for femoral diaphyseal fractures, 1003–1007
for MIPO, 874
for fibular and tibia fractures, 1037–1039
for humerus fractures, 979
for radius fractures, 987–988
for ulna fractures, 987–988

Interlocking nails (ILNs)
in MIO, 935–962
biomechanical properties of, 940–944
general considerations, 940–941
AS nail biomechanics, 943–944
standard nail biomechanics, 941–943
clinical use of, 950–959
complications of, 955–959
outcomes of, 955–959
designs of, 937–940
AS nail design and instrumentation, 938–940
standard nail design and instrumentation, 937–938
for femoral diaphyseal fractures, 1013
general techniques, 952–954
history of use, 936–937
indications for, 944–950
common indications, 945–946
extended indications, 946–950
general considerations, 944–945
preoperative planning, 950–952

Intraoperative fluoroscopy unit
for perioperative imaging in MIO, 902–904

Intraoperative skeletal traction (IST), 874
with traction table, 875–876

IST. See Intraoperative skeletal traction (IST)

K
Kirschner wires, 963

L
Lesser trochanter shape sign
in axis and torsion assessment in MIO for femoral diaphyseal fractures, 1016–1017
Ligamentotaxis, 874
Limb hanging
for MIPO, 880–881
Limb-length discrepancy
in MIO for femoral diaphyseal fractures, 1020–1021
Linear external fixation
in MIPO, 884–885
M

Meta-bone(s)

- anatomy related to, 1046
- described, 1045–1046
- minimally invasive repair of, 1045–1050
- discussion, 1048–1049
- equipment for, 1046–1047
- implants for, 1046–1047
- preoperative assessment and decision making, 1046
- preoperative preparation, 1047
- technique, 1047–1048

Metacarpal fractures

- minimally invasive repair of, 1045–1050. See also Meta-bone(s), minimally invasive repair of

Metatarsal fractures

- minimally invasive repair of, 1045–1050. See also Meta-bone(s), minimally invasive repair of

Minimally invasive osteosynthesis (MIO). See also specific indications and fracture types, e.g., Femur fractures

- for articular fractures, 1051–1068
- biologic considerations in, 923–925
- described, 897, 936
- external fixators in, 913–934. See also External fixators, in MIO
- for femur fractures, 997–1022
- ILNs in, 935–962. See also Interlocking nails (ILNs), in MIO
- mechanical considerations in, 925–927
- minimally traumatic surgical approaches to, 923–925
- perioperative imaging in, 897–911
- equipment for, 902–905
- intraoperative fluoroscopy unit, 902–904
- radiation safety equipment, 904
- surgery table, 904–905
- indications for, 901
- radioprotection in, 905–908
- technique, 908–909
- postoperative imaging in, 910
- preoperative imaging in, 898–901

Minimally invasive plate osteosynthesis (MIPO), 873–895. See also Ulna fractures; specific indications and fracture types, e.g., Humerus fractures

- advantages of, 873
- alignment assessment in, 892–893
- bone-holding forceps in, 887–888
- circular external fixation in, 885–887
- for fibula fractures, 1023–1044
- fracture distractor in, 888–890
- functional reduction by, 873
- goal of, 873–874
- for humerus fractures, 975–982
- IM pinning for, 881–884
- indirect reduction by, 874, 1037–1039
Minimally (continued)
- intraoperative diagnostic imaging, 893–894
- limb hanging for, 880–881
- linear external fixation in, 884–885
 for radius fractures, 983–996
- reduction through plate application in, 890–892
- skeletal traction table for, 873–880
 for tibia fractures, 1023–1044
 for ulna fractures, 983–996
MIO. See Minimally invasive osteosynthesis (MIO)
MIPO. See Minimally invasive plate osteosynthesis (MIPO)

O
Osteosynthesis
 elastic plate
 for femoral diaphyseal fractures, 1015
 minimally invasive. See Minimally invasive osteosynthesis (MIO)
 minimally invasive plate. See Minimally invasive plate osteosynthesis (MIPO)

P
Pancarpal arthrodesis, 1088–1093
 anatomy related to, 1090
 indications for, 1088–1090
 patient positioning, 1091
 postoperative care, 1093
 preoperative planning, 1090–1091
 technique, 1091–1092
Pantarsal arthrodesis using medial plate, 1084–1086
Partial tarsal arthrodesis, 1086–1088
Percutaneous pinning
 for fracture repair, 963–974
 case selection, 964
 clinical results, 972–973
 described, 963
 patient positioning for, 965
 postoperative care, 969–971
 preoperative planning and management, 964–965
 procedure, 967–968
 rehabilitation after, 969–971
 surgical approach, 965–965
Percutaneous plate arthrodesis, 1079–1096. See also specific types, e.g., Hock arthrodesis
 described, 1079–1082
 hock arthrodesis, 1082–1087
 pancarpal arthrodesis, 1088–1093
Pinning
 percutaneous
 for fracture repair, 963–974. See also Percutaneous pinning, for fracture repair
Plate(s)
 in fracture fixation
 length of, 865
locking vs. nonlocking plates, 863–865
position of screws in, 865–866
in MIPO
reduction through, 890–892
Procurvatum–recurvatum malalignment, 1019–1020
Proximal metaphyseal fractures
MIO for, 1001–1021. See also Femoral diaphyseal fractures, MIO for

R
Radiation safety equipment
for perioperative imaging in MIO, 904–905
Radioprotection
in perioperative imaging in MIO, 905–908
exposure time, 906
OR personnel, 906–907
shielding in, 907–908
Radioulnar fractures
ILNs for, 955
Radius
anatomy of, 984
IM pinning of, 883–884
Radius fractures
described, 983–984
MIO for, 983–996
acute vs. chronic fractures, 986
assessment of repair and outcome, 995
decision-making related to, 984–986
for diaphyseal vs. metaphyseal fractures, 985
implant placement, 993–994
indications for, 984–986
indirect reduction, 987–988
locking vs. nonlocking plates for, 986
patient positioning and preparation, 987
postoperative care, 994
preoperative planning, 986–987
for simple vs. comminuted fractures, 984–985
surgical approach, 989–993
Rehabilitation
after percutaneous pinning for fracture repair, 969–971

S
Sacroiliac
anatomy of, 1070–1071
Sacroiliac luxation
described, 1069–1070
minimally invasive repair of, 1069–1077
discussion, 1074–1076
equipment for, 1071
implants for, 1071
Sacroiliac (continued)
 preoperative assessment and decision making, 1071
 preoperative preparation, 1071–1072
 technique, 1072–1074
Sagittal plane
 procurvatum–recurvatum malalignment, 1019–1020
Shielding
 in radioprotection during perioperative imaging in MIO, 907–908
Shoulder fractures
 MIO for, 1053–1055
Skeletal traction table
 for fracture reduction, 874–880
 complications of, 879–880
 described, 874
 indications for, 874–875
 IST with, 875–876
 malalignment correction, 879
 patient positioning on, 876–878
 procedure technique, 878–879
Steinman pins, 963
Stiffness of materials
 in fracture fixation, 855–857
Stiffness of plate-bone construct
 factors affecting
 in fracture fixation, 863
Strain of materials
 in fracture fixation, 854–855
Stress of materials
 in fracture fixation, 854–855
Surgery table
 for perioperative imaging in MIO, 904–905

T
Talar fractures
 MIO for, 1063
Tibia
 anatomy of, 1024–1027
 IM pinning of, 883
 positioning for traction of, 877–878
Tibia fractures
 described, 1023–1024
 ILNs for, 955
 MIO for
 distal, 1062–1063
MIPO for, 1023–1044
 acute vs. chronic, 1031
 alignment assessment, 893
 assessment of repair and outcome, 1042–1043
 diaphyseal vs. metaphyseal fractures, 1029–1031
 immature vs. mature patient, 1028–1029
indications for, 1027
indirect reduction, 1037–1039
locking vs. nonlocking plates in, 1031–1037
patient positioning, 1037
postoperative care, 1042
preoperative evaluation, 1027–1037
procedure, 1039–1042
simple vs. comminuted fractures, 1027–1028
surgical approach, 1039

Tibial plateau fractures
MIO for, 1062

U

Ulna
anatomy of, 984
IM pinning of, 883–884

Ulna fractures
described, 983–984
MIPO for, 983–996
acutely v. chronic fractures, 986
assessment of repair and outcome, 995
decision-making related to, 984–986
for diaphyseal vs. metaphyseal fractures, 985
implant placement, 993–994
indications for, 984–986
indirect reduction, 987–988
locking vs. nonlocking plates for, 986
patient positioning and preparation, 987
postoperative care, 994
preoperative planning, 986–987
for simple vs. comminuted fractures, 984–985
surgical approach, 989–993

V

Varus–valgus malalignment, 1019