tion, with treatment targeted at the infecting pathogens. Optimal drug selection is based on predicted bacterial susceptibility, drug distribution and activity in the respiratory tract, and safety for the patient; however, treatment is often required before results of culture and sensitivity tests are completed. Additionally, these infections are often the result of underlying disease processes that predispose the patient to secondary bacterial infection and may complicate the response to therapy. This article presents an overview of the unique physiology and defense mechanisms of the respiratory system, the diversity of microbial organisms that may colonize and invade the respiratory tract, and the factors that affect antimicrobial therapy in the diseased state in dogs and cats.

Experimental Drug Therapy for Respiratory Disorders in Dogs and Cats
Lester Mandelker

Experimental therapy in veterinary medicine is based on empiric reasoning. If a particular therapy is labeled experimental, it means that its effectiveness has not been demonstrated scientifically. Empiric therapy is experimental and is based on experience, not on scientific proof. The purpose of this article is to suggest the use of specific experimental drug therapies for certain respiratory disorders in dogs and cats.

Cumulative Index 2000

Subscription Information Inside back cover

Erratum

In Table 1 (p. 792) in the article by Karol A. Mathews, DVM, DVSc, "Nonsteroidal Anti-inflammatory Analgesics: Indications and Contraindications for Pain Management in Dogs and Cats," appearing in the July 2000 issue of The Veterinary Clinics of North America: Small Animal Practice, the proper dose and route for carprofen in dogs indicated for surgical pain should be:

\[\leq 4.0 \text{ mg/kg IV, SC} \]

Carprofen should not be injected intramuscularly.